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ABSTRACT 
Genetic engineering of microbes has developed rapidly along with our 

ability to synthesize DNA de novo. Yet, even with decreasing DNA 

synthesis costs there remains a need for inexpensive, rapid and 

reliable methods for assembling synthetic DNA into larger constructs 

or combinatorial libraries. While technological advances have resulted 

in powerful techniques for in vitro and in vivo assembly of DNA, each 

suffers inherent disadvantages. Here, an ex vivo DNA cloning suite 

using crude cellular lysates derived from E. coli is demonstrated to 

amplify and assemble DNA containing small sequence homologies. 

Further, the advantages of an ex vivo approach are leveraged to 

rapidly optimize several parameters of the ex vivo DNA assembly 

methodology testing lysates from different engineered strains of E. 

coli, with various buffer components and using titrations of purified 

cloning enzymes. Finally, in order to complete the cloning suite, a 

vector expressing the Pyrococcus furiosis (Pfu) DNA polymerase was 

designed, constructed and expressed in E. coli to create a 

‘functionalized lysate’ capable of ex vivo PCR. Not only do we 

demonstrate ex vivo cloning methodology as a complete cloning package 

capable of replacing the expensive cloning reagents currently required 

by synthetic biologists, but also establish ex vivo as an overarching 

approach for conducting molecular biology.
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Chapter 1. Introduction and Background 

“What I cannot create, I do not understand” 
- Richard Phillips Feynman, PhD 

 

1.1. DNA Assembly and Synthetic Biology 

Our capacity to (re)engineer living systems is linked to our ability 

to physically build specific DNA molecules that encode desired 

functionality and behavior. Thanks to major advances in DNA sequencing 

and DNA synthesis technologies, a renaissance in genetic engineering 

known as synthetic biology has sparked incredibly rapid progress in 

our ability to engineer life. Synthetic biology, metabolic 

engineering, systems biology and associated disciplines can be 

leveraged to not only access the estimated ~100 million biological 

compounds present on our planet, but create sophisticated biological 

entities as molecular machines capable of replication, catalysis, 

sensing and computational response1. The programmable chemistry 

potentiated by recombinant DNA technologies can be harnessed to 

address societal needs such as food scarcity; renewable fuel sources; 

environmental remediation and protection; medicinal (and veterinary) 

diagnostics and therapeutics; or defense against bioterrorism2,3. 

Due to difficulties stemming from the inherently ‘analog’ nature and 

complex interdependence of biochemical systems on top of the 

staggering permutations of even the smallest of genetic circuits, 
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synthetic biologists have focused on the characterization, 

standardization and modularity of biological parts4. Yet, to achieve 

the overarching synthetic biology dream we must continue to optimize 

the design-build-test engineering loop until first principles of de 

novo genetic design are ascertained. 

While the current bottleneck in the Synthetic biology engineering loop 

lies in the design portion of the loop (since most initial designs are 

not optimal and possibly not even functional), the only way to 

alleviate this design bottleneck is to continue to build and test many 

genetic designs. This is not just to identify adequate designs for the 

application at hand, but also to inform subsequent design efforts. The 

ensuing study not only presents an optimized DNA assembly methodology 

significantly less expensive and/or time-consuming than current 

methods, but also presents an overall approach to rapid phenotypic 

characterization, optimization and alternate route for laboratory 

molecular biology. 

Although our ability to construct novel DNA has come a long way from 

Nirenberg’s initial synthesis of a nucleic acid homopolymer5, it still 

proves most cost effective to purchase DNA in small fragments or 

single-stranded oligomers to assemble into larger, gene-length 

products. This is particularly true when combinatorial libraries are 

being constructed. Indeed, synthetic biologists often rely on 

construction and thorough characterization of libraries of modular 

genetic parts. For instance, characterization of promoter regions and 

ribosome binding sites (RBS) has generated successful part libraries 
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capable of tuning transcriptional and translational expression of 

downstream protein coding sequences6-8. Data collected from these 

experiments have even produced fairly robust models capable of 

rationally designing tunable parts, such as the RBS calculator9. Yet 

the interplay between DNA sequence and phenotype is full of nonlinear, 

epistatic and stochastic dynamics, minimizing the modularity and 

reliability of genetic parts. For example, combining a highly 

expressive promoter with a highly expressive RBS part may result in 

very low overall protein expression. To address these problems 

synthetic biologists must often rely on parts tested in a 

combinatorial manner. Beyond regulatory parts for modulating gene 

expression, encoding novel functions through protein engineering still 

remains an undertaking of brute force necessitating generation of 

extreme sequence diversity through directed evolution (requiring an 

appropriate screening approach), combinatorial domain-swapping or a 

synthetic metagenomics approach. In order to address the design 

bottleneck of the design-build-test loop, the build and test steps 

must be made extremely rapid. 

Traditionally, recombinant DNA has been constructed using restriction 

cloning (i.e., cutting with an endonuclease and joining with a ligase) 

and DNA fragments isolated from natural sources by restriction 

digestion or polymerase chain reaction. In addition to restriction-

ligation approaches, other site-specific recombination systems have 

been employed to assemble DNA fragments with great success10. However, 

genetic engineering has recently become more flexible with the use of 
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‘sequence-independent’ approaches that take advantage of the 

decreasing cost of DNA synthesis11-14. In a perfect world, synthesis of 

DNA would be so cheap that all DNA constructs could be synthesized in 

their entirety, sequence-verified and delivered to researchers for 

testing. However, current gene synthesis rates are highly limiting 

often costing several thousand dollars to synthesize full-length 

genes. Instead, most DNA is ordered in more cost-effective fragments 

(as of this writing, single-stranded oligomers are $0.35 per base up 

to 60 bases and $120 for a 750 base pair double-stranded fragment 

through Integrated DNA Technologies® [IDT]) and then assembled using 

overlapping homologous sequences on the ends of the oligomers in a 

‘sequence-independent’ fashion.  For example, polymerase chain 

assembly (PCA), a variation on the general polymerase chain reaction 

(PCR), uses partially overlapping 60bp single-stranded oligomers 

alternating strands of an entire gene sequence in equimolarity as a 

template. These oligos are pooled and allowed to anneal and extend 

into longer and longer double-stranded sequences until a complete 

double-stranded gene sequence is generated. These ‘synthons’ can be 

quickly inserted into a plasmid backbone by traditional sequence-

specific or sequence-independent methods. 
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Figure 1.1 DNA Assembly by a Chew-back, Anneal and Repair Mechanism 
Depicted are the steps employed by Gibson Isothermal assembly (ISO)  and analogous 
putative steps for in vivo single-strand annealing predicted to be the active 
mechanism in ex vivo DNA assembly. In steps 1-3, an exonuclease (here 5’-to-3’) chews 
back (resects) the double-stranded ends to expose terminal homologies (colored blue), 
which can anneal to each other in step 4. If there has been excessive resection as 
depicted in steps 5-6, a DNA polymerase is used to repair the exposed gaps. Finally, a 
DNA ligase acts to seal the DNA backbone (7), to yield a fully sealed, accurate 
assembly/repair. The table describes the tripartite mixture of enzymes in the ISO 
formulation and some analogous naturally-occuring enzymes from yeast, E. coli and D. 
radiodurans. 
 
When trying to assess the function of DNA sequences in the cell, it is 

of great utility to have sequence-independent cloning techniques that 

do not constrain design (e.g., scars from restriction sites). 

Homologous recombination is the longest-tenured sequence-independent 

cloning method and the most widely utilized for integration onto the 

genome. Highly active homologous recombination systems native to 

Bacillus subtilis and S. cerevisiae make effective in vivo 

recombination systems, while in E. coli, the Lambda Red recombinase 
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genes can greatly increase the rates of homologous recombination15. In 

fact, S. cerevisiae has been utilized to assemble and propagate entire 

bacterial genomes from very large overlapping fragments, through 

transformation-associated recombination (TAR)16. However, the 

assemblies must be designed to work with the organismal chassis and, 

unless the construct is to remain in the assembly host, must be 

designed to shuttle into the final host organism. The TAR cloning 

process can therefore take up to eight days to get a DNA construct 

into the terminal host. While monetarily inexpensive, these time 

expenses are often a disappointing attribute of in vivo methodologies. 

In contrast to in vivo approaches, purified in vitro systems offer 

user-control, efficiency and time savings, but are often expensive to 

purchase or difficult to establish in-house due to complications in 

protein purification. Once established there is no denying the potency 

of these systems. In 2008, a completely synthetic Mycoplasma genome 

was assembled from chemically synthesized double-stranded DNA (dsDNA) 

fragments (5-7 kilobase pairs each) using an in vitro chew-back 

assembly method16. More recently, the mouse mitochondrial genome was 

reconstructed from overlapping synthetic single-stranded 

oligonucleotides (60 nucleotides each) using a three-enzyme in vitro 

isothermal DNA assembly method (ISO assembly, also known as Gibson 

assembly)17. Currently the most popular and efficient sequence-

independent cloning method, Gibson and colleagues discovered an 

optimized mixture of a phage 5’-to-3’ DNA exonuclease, DNA ligase, and 

heat-stable polymerase catalyzing highly efficient DNA end joining 
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(Figure 1.1). As the current “gold-standard” for DNA assembly, Gibson 

assembly suffers from the disadvantages of most purified in vitro 

systems – it is highly expensive. Distributed as a master mixture from 

New England Biologicals® (through Synthetic Genomics®) each reaction 

costs $15 dollars. While very efficient and taking only an hour, if 

trying to assemble larger libraries of constructs this is not a cost-

effective route. 

1.2. The ex vivo approach 

The terminology ‘ex vivo’ – Latin for “out of the living” – is a 

common term in organismal biology, where tissue or even full organs 

are isolated from an organism with minimal perturbation of it’s 

natural environment. This permits researchers more control over 

conditions and access to measurements not otherwise possible (or even 

ethical) in a living organism. In this manner, the “ex vivo” moniker 

describes an experiment combining the advantages of an in vivo 

approach and an in vitro approach. 

While ex vivo experimentation is traditionally associated with organs 

and tissues, the approach has a storied history in microbiology and 

cellular biology. The first ex vivo reaction catalyzed by a microbial 

cell extract was performed by Eduard Buchner (1897) over 100 years 

ago, converting sugar to ethanol and carbon dioxide in a yeast 

extract, eventually winning the Nobel Prize in Chemistry (1907). Using 

lysate fractions derived through differential centrifugation, 

microsomes were discovered as catalysts of protein synthesis, leading 
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to the identification of mRNA as the template for protein synthesis by 

Nirenberg and Matthaei (1961) in their own extract-based reaction5. As 

history and technology progressed the microbiology and cellular 

biology systems derived from cellular extracts have become popularly 

referred to as ‘cell-free systems’ (CFS). However, ‘cell-free system’ 

is an umbrella term giving very little detail to the composition of 

the final system. For instance, cell-free systems for protein 

synthesis range from crude extract to systems reconstituted in vitro 

with entirely purified components. For this reason, we propose ex vivo 

be used to describe a CFS which is minimally altered from its’ in vivo 

origins by only very crude purification or manipulation (e.g., 

centrifugation of insoluble components).  

1.3. Applications of Cell-Free Systems 

Since their inception, CFSs have primarily been leveraged to probe the 

central processes of transcription and translation. Over the past ~25 

years, building off work establishing coupled transcription-

translation CFS18, modern CFS have evolved into robust systems capable 

of high-level protein production. Recent work with E. coli-based 

extracts have garnished yields exceeding 2 mg/mL protein at scales 

exceeding 100 liters19. Complex eukaryotic proteins containing high-

levels of post-translational modifications can be produced in cell-

free extracts from wheat-germ, rabbit reticulocytes and insect cells 

at high titers. This is important, since CFSs obviate the need to 

perform in vivo manipulations that can be difficult or impossible in 

some eukaryotic cell lines. Cell-free protein production is therefore 
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particularly attractive to industrial production of therapeutic 

peptides as they are commonly post-translationally modified, exist 

associated with the membrane or may exhibit toxicity (e.g. 

antimicrobial peptides).  

For synthetic biology, CFSs have been cleverly employed to expedite 

the prototyping of genetic parts for gene expression. By monitoring 

the production of fluorescent proteins in a CFS the time investment 

and noise (i.e., plasmid copy number) associated with in vivo 

characterization is greatly reduced. Although not an absolute perfect 

measure of in vivo dynamics, a set of constitutive and inducible 

promoters tested in a CFS were shown to correlate well with 

measurements of in vivo gene expression and dose-response20.  

Cell-free protein synthesis has benefited greatly from advances in 

mimicking intracellular conditions, activating integrated biological 

processes and controlling cell-free metabolism. Control over 

metabolism in CFSs has motivated the development of CFSs as platforms 

for the synthesis of metabolites. Although most of these higher-

functioning CFSs require further purification of the pathway 

constituents from the lysate, in a truly excellent demonstration of an 

ex vivo system, Panke and colleagues optimized the catalysis of 

dihydroxyacetone phosphate (DHAP) from glucose21. The authors were able 

to reach concentrations far beyond those documented in vivo (12 mM 

DHAP) by deletion of two genes in the production strain combined with 

supplementation of butanol and rabbit muscle aldolase to the reaction. 

DHAP is an unstable product, but the exogenous addition of the 
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aldolase and butanol allowed conversion to a more stable form. This is 

a perfect example of the simplicity and flexibility of CFS 

optimization, not only by modification of the host chassis, but also 

by circumventing the membrane to directly supply new components (here 

the small-molecule butanol and a non-bacterial enzyme) impossible in 

the same in vivo system. 

The constant struggle between the engineering objective to optimize 

product yield and the cell’s biological objective to optimize biomass 

production is remedied by an ex vivo approach. The functionalities of 

the cell remain intact, while removal of the cell encapsulation 

enables manipulation of the internal chemistries to activate, 

integrate and focus cellular resources towards a desired objective. 

Without compartmentalization there is the opportunity to greatly 

exaggerate substrate concentrations, remove product, and rapidly 

sample and monitor reaction conditions. In in vivo systems researchers 

and engineers must respect the constraints, time-scales and 

stochasticity inherent to life. On the other hand, purified in vitro 

systems provide exceptional flexibility and control, resulting in 

higher reaction efficiencies and better reproducibility. Yet, in vitro 

systems are low-throughput and orders of magnitude more expensive than 

their in vivo counterparts. This is clearly demonstrated in the 

production of cellulosic biofuels, where the primary cost-driver is 

the expense of purified enzymes for biomass pretreatment22,23. For 

investigators, in vitro systems sacrifice cellular context necessary 

to make conclusive inferences about in vivo phenomena. A simple, yet 
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elegant compromise between in vivo and in vitro approaches, ex vivo 

systems enhance both engineering and investigatory freedom. 

1.4. Double-strand Break Repair: Natural DNA Assembly 

The end-to-end joining of free dsDNA fragments is a vitally important 

process for all cellular life in the repair of double-stranded DNA 

breakage. DNA double-stranded breaks (DSB) are ubiquitous across all 

kingdoms of life, occurring during normal housekeeping functions and 

in response to DNA damaging agents such as chemicals and 

irradiation24,25. Very simply, a DSB is a break in both strands of 

duplex DNA. A DSB is a particularly dangerous DNA lesion as these 

breaks can potentially disrupt gene expression, alter chromosome 

organization or provide substrates for single- or double-stranded 

exonucleases, catalyzing the deletion of genetic information. DSB are 

also notoriously difficult to repair. Where a single-stranded break 

can be easily repaired using the conserved information on the intact 

strand, generally DSB have no associated template at the free ends to 

guide repair. Due to these two reasons DSB repair is widely associated 

with the development of cancer and has, therefore, been the subject of 

extensive study26,27. There are two major mechanisms for DSB repair: 

end-joining and homologous recombination. The major distinction 

between the two being that the former requires no template to 

facilitate repair of the DSB. The presence of template DNA is, 

therefore, essential in the decision and mechanism of DSB repair 

pathways. 
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1.4.1. Homologous Recombination 

Homologous recombination generally leads to high-fidelity repair, 

making it the most ubiquitous and dominating DSB repair pathway across 

organisms. However, unlike end-joining, homologous recombination’s 

requirements for a template means that a second copy of the region 

containing the DSB must exist in the cell. For most prokaryotes, this 

is not a problem as they often exist with multiple or, at least, 

partial copies of their genome. In eukaryotes, homologous 

recombination is reserved for the S and G2 phases of the cell cycle 

when sister chromatids are present, acting as template for repair and 

meiotic crossing-over. 

1.4.2. Non-homologous End-Joining 

End-joining implies the linking of two free duplex DNA termini into a 

ligated product. Traditionally referred to as non-homologous end-

joining (NHEJ), the relatively simple process relies on minor 

processing of DNA termini to prepare them for direct ligation in the 

absence of any required homologous template. While this means that 

repair can take place at any point during the cell cycle regardless of 

genome copy number, the fidelity of repair is relatively low. Errors 

are often propagated from loss-of-information during end processing 

(resection), explaining the relatively low occurrence in prokaryotes 

in comparison to homologous recombination. In higher eukaryotes, the 

error-prone nature of NHEJ has evolved into a highly coordinated 

system to generate sequence diversity in the differentiation of unique 
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B- and T-lymphocytes. More recent studies have revealed ‘alternate 

end-joining’ or ‘microhomology-mediated end-joining’ pathways 

utilizing repeat sequences at or near the terminus of DSBs, such as 

those that may occur in breaks near or within ribosomal operons of 

prokaryotes28,29. 

1.4.3. Alternative End-Joining 

Alternative end-joining pathways appear to exist in a grey-area 

between the extremes of NHEJ and homologous recombination relying on 

combinations of cellular machineries from both processes, 

distinguished by the degree of available homologous template. Outside 

of rare circumstances, like the ribosomal operon described above, a 

DSB is very unlikely to form with significant end homologies to guide 

non-templated repair. Nevertheless, an alternative DSB repair pathway 

known as single-strand annealing (SSA) exists to join DSB with 

significant homologies at their termini30. As in the homologous 

recombination process, SSA involves an extensive end-resection to 

expose single-strand overhangs31. Yet, in contrast to homologous 

recombination, these ends subsequently anneal to the newly exposed 

homologies on the cognate DSB for a final step of ligation (similar to 

NHEJ). SSA is a mechanistic analog to the Gibson ISO assembly method 

(Figure 1.1), following the same chew-back (resection), annealing, 

polymerization and ligation steps, but occurs (albeit infrequently) in 

completely wild-type microbes. Hopefully, by freeing and concentrating 

the enzymes necessary for SSA end joining of overlapping DNA fragments 

will take place. E. coli, and S. cerevisiae make good chassis not only 
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due to preliminary research suggesting they are capable of catalyzing 

end joining in an extract-based reaction, but their relatively easy 

culturing methods and availability to most labs13,32. D. radiodurans 

makes another excellent chassis for exDA, as it is known to have some 

of the most active DNA repair systems, making it the world’s (current) 

most radioresistant organism33. 

1.5. The ex vivo Cloning approach 

In the ensuing study, we endeavored to demonstrate the facilities of 

the ex vivo approach to demonstrate and subsequently investigate and 

optimize DNA assembly. Using our own assays of assembly we tested 

lysates prepared from different organisms and strains, under varying 

growth conditions and with variable buffer/reaction conditions. 

Titrations of common cloning enzymes were employed to investigate the 

underlying enzymatic mechanisms of DNA assembly. Applying genome 

engineering techniques we endeavored to engineer a new strain of E. 

coli lacking competing nucleases and capable of autolysis for ex vivo 

DNA assembly. We designed and constructed pUN (‘plasmid unique 

neutral’) a novel plasmid featuring a screenable blue chromogenic 

protein (BCP) insert and ‘unique neutral sites’ for facile cloning via 

ex vivo DNA assembly or other sequence-independent assembly methods. 

Lastly, using our new pUN plasmid we replaced the BCP insert with a 

cassette expressing a codon-optimized Pyrococcus furiosus (Pfu) DNA 

polymerase gene. This plasmid yields a lysate with high levels of the 

thermostable DNA polymerase now ‘functionalized’ to perform a high-

fidelity ex vivo PCR reaction. With ex vivo methods for both DNA 
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assembly and PCR we report the creation of the first all-encompassing 

ex vivo Cloning pipeline. 
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Chapter 2. ex vivo DNA ASSEMBLY 

Data and Figures reproduced with permission from: 
Fisher AB, Canfield ZB, Hayward LC, Fong SS and McArthur GH IV (2013) Ex vivo DNA 
assembly. Front. Bioeng. Biotechnol. 1:12. doi: 10.3389/fbioe.2013.00012 
 
Author Contributions: 
George H. McArthur and Adam B. Fisher designed the experiments, which were carried out 
in the laboratory of Stephen S. Fong. Adam B. Fisher performed the experiments with 
Zachary B. Canfield and Laura C. Hayward. George H. McArthur, Adam B. Fisher, and 
Stephen S. Fong interpreted the data and wrote the manuscript. All authors discussed 
results and commented on the manuscript. 
 

2.1. Initial 2-way ex vivo DNA Assemblies 

To assess the ability of select cellular lysates to join together 

dsDNA, we first designed two amplicons with appropriate overlapping 

ends (26 and 30 bp overlaps) to be assembled into a circular plasmid 

(Figure 1.1A)34. Correctly assembled plasmids endow E. coli 

transformants with selective resistance to the antibiotic 

chloramphenicol and also visually screenable expression of a blue 

chromogenic protein (BCP) native to the coral Acropora millepora 

(Figure 1.1B)35. Template plasmids housing the bcp coding sequence 

(pSB1C3-K592009) and the appropriate antibiotic resistance and 

replication origin (pSB1C3-J04450) produce white and red/pink 

colonies, respectively, providing a convenient way to track 

transformation efficiencies (Figure 1.1B). 

In this initial experiment, we used lysates of S. cerevisiae, E. coli, 

and D. radiodurans (hereafter Sce, Eco, and Dra, respectively) and a 

simple buffer containing ATP and MgCl2 to attempt ex vivo DNA assembly. 
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The two amplicons were incubated for 1 hour with each lysate. Samples 

of each reaction mixture were subsequently used to transform E. coli 

NEB10β. 

 
Figure 2.1 The 2-way Circular Assembly 
(A) 2-way assembly was demonstrated by joining a coding sequence for blue chromogenic 
protein (BCP; a 698 bp segment of pSB1C3-K592009 colored in dark blue) and the 
majority of pSB1C3-J04450 (a 2446 bp segment), thereby replacing the RFP coding 
sequence with BCP (pSB1C3-BCP). The pMB1 origin is colored in green and the 
chloramphenicol resistance gene is colored orange. (B) Correctly assembled plasmids 
allow transformants to express BCP (blue colonies) while colonies containing carryover 
template plasmids appear either red (pSB1C3-J04450) or white (pSB1C3-K592009).  
 

Interestingly, Dra-incubated DNA did not produce transformants, 

although DNA incubated with Sce or Eco successfully transformed E. 

coli. Further analysis by agarose gel electrophoresis showed 

significant degradation of the individual amplicons, indicating that a 

highly active exonuclease system might have prevented the assembly of 

DNA by Dra (Appendix B Figure B.1). Even expected background 

transformants resulting from lingering circular PCR template were 

absent, suggesting that endonuclease activity is also high in Dra. 

Indeed, after further investigation we found a consensus DrdI site 
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(GAC-N6-GTC) between 1475 and 1486 (GACGCTCAAGTC) in the replication 

origin of our plasmids36. 

2.2. Testing the Magnesium:ATP Ratio with 2-way Linear 

Assemblies 

We then explored ways to improve the efficiency of ex vivo DNA 

assembly with Eco and Sce by varying the relative composition of ATP 

and MgCl2 in our buffer, adding NAD to the buffer (to power NAD+-

dependent processes such as ligation), modulating the temperature at 

which the reaction mixture was incubated, increasing the amount of 

cellular lysate in our reaction, and increasing the duration of 

incubation. To directly assess the efficacy of ex vivo DNA assembly 

and avoid variation associated with transformation, we chose to 

visualize formation of a linear product (Figure 2.2A) from a pair of 

overlapping amplicons (28 bp overlap) via agarose gel electrophoresis 

of the ex vivo assembly reaction prior to transformation (Figure 

2.2B). In this manner, we were able to compare different reaction 

conditions on their ability to join two overlapping dsDNA into one 

linear product. 

Buffers were made of 1 mM DTT, 1 mM NAD, and varying concentrations of 

ATP and Mg+2. A wide range of ATP:Mg+2 ratios were initially tested with 

1-hour Eco reactions at 37°C: 1:5, 1:10, 1:20, 5:5, 5:10, 5:20, 10:5, 

10:10, and 10:20 (mM:mM). Only three ATP:Mg+2 ratios were chosen for 

further reaction optimization: 10:5, 5:5, and 1:10 (mM:mM) (buffers 1–
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3 in Figure 2.2B, respectively). Linear products resulting from 

assembly by Sce were not at all visible in the gel, although bands of 

small pieces of DNA indicate that there is some nuclease activity 

under most conditions tested. On the other hand, Eco appears to have 

significant activity at 30°C and 37°C even without the addition of 

buffer. Previous studies have noted that the nucleolytic behavior of 

the RecBCD complex of E. coli changes based upon the relative amount 

of ATP to free Mg+2in vitro 37. We observed a similar trend in our 

lysates; the most efficient assembly reactions (for both 30°C and 

37°C) were carried out under conditions of excess magnesium relative 

to ATP (Buffer 3 in Figure 2.2B), probably because ATP can chelate Mg+2 

with high affinity under physiological conditions 38. 
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Figure 2.2 The 2-way Linear Assembly and Buffer Optimization 
(A) Optimized ex vivo reaction conditions were identified by visualizing the joining 
of a 697 bp segment of pSB1C3-K592009 (BCP) and a 381 bp segment of pSB1C3-J04450 
(Promoter) into a larger linear DNA molecule. (B) Reactions were run for 1 and 2 h 
(left and right in each gel, respectively), at three temperatures and four buffer 
compositions for each Eco and Sce. All buffers contained 1 mM NAD and 1 mM DTT. ATP 
and Mg2+ concentrations(mM:mM)varied as follows:(1)10:5,(2)5:5,(3) 1:10. The control 
lanes include a reaction with no supplemented buffer (−) and a negative control 
(“ctrl”) DNA-only lane (no buffer or lysate). 
 

Each ex vivo reaction condition was tested for both 1- and 2-hour 

incubations. Initial experiments indicated that greater incubation 

times (3–6 hours) do not improve ex vivo assembly yields (data not 

shown). For all successful assemblies, 2-hour reactions appear to 

generate more linear product than 1-hour reactions. The temperatures 

selected for ex vivo reaction optimization reflect cell culture 

conditions (30°C for yeast and 37°C for E. coli) and the temperature 

used for ISO assembly reactions (50°C). The 50°C reactions are 

considered a negative control since we do not expect the cellular 

machinery in Eco or Sce to be thermostable, although transient 

activity may occur initially. Based on the results of these 
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experiments we selected a buffer composition of 1 mM ATP, 10 mM Mg+2, 1 

mM DTT, and 1 mM NAD+ (i.e., Buffer 3 in Figure 2.2B) incubated at 

37°C for 2-hour as our optimized conditions for both Eco and Sce. 

 

Figure 2.3 The 3-way Assembly and Colony Counts 
(A) Three-way assembly was demonstrated by joining the BCP coding sequence (a 696 bp 
segment of pSB1C3-K592009), the majority of a plasmid carrying a different antibiotic 
resistance gene (a 2214 bp segment of pSB1K3-J04450) and a promoter-RBS region used to 
drive BCP expression (a 387 bp segment of pSB1C3-J04450), resulting in pSB1K3-BCP. 
(B,C) The pMB1 replication origin is colored in green, the chloramphenicol resistance 
gene is colored orange and the kanamycin resistance gene is colored purple. Colony 
counts for optimized two- and three-way assembly experiments. The negative control 
assembly reaction is labeled “None” meaning that these colonies result from in vivo 
assembly in E. coli. 
 

2.3. Optimized Assemblies with Yeast and E. coli Lysates 

Under optimized reaction conditions, Eco and Sce were used again to 

perform the two-way dsDNA assembly. In addition, we designed three 

overlapping amplicons (30, 29, and 26 bp overlaps) to demonstrate a 

three-way assembly, which is not only more complex but also more 

useful for generating combinatorial libraries (Figure 2.3A). For each 

of these assembly tests, lysate-incubated DNA was allowed to react for 

2-hours before transformation of E. coli. Control conditions of zero 



www.manaraa.com

 

 

 

22 

incubation time and reactions with no lysate added were also run to 

ensure that the lysate was indeed facilitating DNA assembly and not 

otherwise affecting the transformation process. 

Our results (Figure 2.3B and Figure 2.3C) clearly indicate that DNA is 

indeed being assembled ex vivo. For two- and three-way assemblies, 

both Eco and Sce, transformation efficiencies significantly increase 

when the DNA to be assembled is allowed to incubate with the lysate. 

Unexpectedly, the “no lysate” negative control revealed that for two- 

and three-way assemblies the overlapping amplicons can be joined 

together into a circular plasmid in vivo, suggesting that a 

significant fraction of the ex vivo assembly reactions – and also in 

vitro reactions (e.g., ISO assembly) – actually occur inside E. coli 

after transformation (i.e., transformation-associated recombination 

cloning in E. coli). Although Eco-mediated assembly produced many blue 

colonies for both two- and three-way assemblies (423 and 491 colonies, 

respectively), Eco-lysate appeared to be detrimental to the overall 

transformation efficiency as when transformation reactions were spiked 

with Eco-lysate (but not allowed to incubate with the DNA amplicons) 

the presence of colonies was greatly diminished (See, Table 2.1). 

2.3.1. Effect of Detergents on Transformants 

To test whether or not the detergent-based lysis buffer used to 

produce Eco was affecting the transformation process, we carried out 

the assembly reactions and transformations in the presence of the 

lysis buffer but without cellular lysate. As summarized in Table 2.1, 
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the bacterial lysis buffer inhibits transformation completely. 

Therefore, Eco-mediated assembly is likely much more efficient than we 

have observed and an alternative lysis method would probably increase 

overall transformation efficiency. The yeast lysis buffer does not 

appear to inhibit transformation of E. coli, which is not surprising 

because it is designed to lyse yeast cells. Interestingly, the number 

of colonies produced by DNA incubated with yeast lysis buffer was 

equivalent to the number of colonies produced by Sce-incubated DNA and 

that produced by the “no lysate” control. These data suggests that 

Sce-mediated DNA assembly was not observed but rather indicates that 

in vivo end joining in E. coli facilitates DNA assembly in this case. 

Interestingly, there would appear to be an increase in total colonies 

formed when the DNA is incubated with CelLytic Y. One might speculate 

that during incubation perhaps the buffer composition influences the 

DNA to adapt a more tightly supercoiled conformation as is seen in 

solutions with higher salt concentrations and is observed to greatly 

increase transformation efficiency39,40. However, without further 

experimentation and knowledge of the proprietary CelLytic Y formula 

this remains purely speculative. 
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Table 2.1. Effect of Detergents on Assembly and Transformation 

2-way ex vivo circular DNA assembly 

Lysis Buffer Reaction time # Colonies # Blue # Red # White 

CelLytic B 0 minutes 0 0 0 0 

CelLytic B 120 minutes 0 0 0 0 

CelLytic Y 0 minutes 42 41 0 1 

CelLytic Y 120 minutes 150 140 0 10 

3-way ex vivo circular DNA assembly 

Lysis Buffer Reaction time # Colonies # Blue # Red # White 

CelLytic B 0 minutes 0 0 0 0 

CelLytic B 120 minutes 0 0 0 0 

CelLytic Y 0 minutes 15 8 7 0 

CelLytic Y 120 minutes 27 18 9 0 

Tabulation of colony counts for transformations that were carried out in the presence 
of lysis buffer and the appropriate DNA but without cellular lysate. No transformants 
were seen when the DNA was incubated with the bacterial lysis buffer (CelLytic B), 
suggesting that this particular buffer somehow inhibits transformation. On the other 
hand, the yeast lysis buffer (CelLytic Y) showed no inhibition of transformation, 
which may not be surprising since the bacterial lysis buffer is designed to act on 
bacteria such as E. coli NEB10β. However, it is also clear from these results that Sce 
does not offer any advantage over the yeast lysis buffer for DNA assembly and, 
therefore, it can be deduced that the transformants resulting from Sce incubation are 
actually a result of in vivo DNA assembly in E. coli. 
 

2.4. Conclusions and Discussion 

Through a series of experiments investigating circular and linear DNA 

assembly, we found that: 1) lysate derived from E. coli NEB10β, a RecA-

deficient strain, was able to efficiently assemble dsDNA, 2) a 

fraction of the assembly takes places inside E. coli NEB10β post-

transformation by in vivo DNA assembly, and 3) lysates derived from D. 
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radiodurans and S. cerevisiae were not able to join together dsDNA 

under the conditions we tested. In addition, it is worth noting that 

we attempted single-stranded DNA (ssDNA) assembly of synthetic 60-mer 

oligonucleotides (20 bp overlaps) that was accomplished by ISO 

assembly but was unsuccessful using our ex vivo approach (data not 

shown). Over the course of all of our experiments we found that the 

trends in efficiency of assembly held true across organisms 

independent of batch-to-batch variation. 
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Chapter 3. Optimization of ex vivo DNA 

Assembly 

3.1. Lysate Preparation 

Arguably, the most important step in any ex vivo investigation is the 

preparation of the lysate. Since this starting material may be used 

for many subsequent reactions and experiments it is critical to fully 

investigate the factors contributing to the suitability of resulting 

cell extracts prior to optimizing downstream reaction parameters. To 

investigate lysate preparation we tested the effects of varying media 

composition, harvesting at different points in the growth curve, the 

addition of cryopreservant (i.e., glycerol) and lysis method. 

3.1.1. Harvest Phase 

The typical growth curve of E. coli (and other prokaryotic bacteria) 

show an initial period of non-exponential growth (known as lag phase) 

in which the cells adjust their intracellular physiology in response 

to the change in extracellular conditions and the increase in 

available nutrients. This is followed by the exponential phase in 

which the cells reproduce at maximal capacity (given the external 

conditions) until the external environment becomes suboptimal (due to 

culture density, accumulation of waste/byproducts or depletion of 

nutrients). At this point the cells transition from exponential phase 

into a quiescent state known as stationary phase (SP). Reproduction is 
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halted and metabolism is severely slowed as the cell allocates 

resources to only the very most essential processes until new 

resources become available and the whole grow curve can restart. 

 

Figure 3.1 Harvested Growth Stage on Assembly Efficiency 
NEB10β was grown in TB and harvested at various points along the growth curve. Growth 
phase was judged by optical density at 600 nm, using absorbances of 0.4, 1.0 and >2.0 
as markers of early exponential, late exponential and stationary phases, respectively. 
Lysates were prepared as previously reported using detergents and two-way assemblies 
performed. Fold difference represents the change in product band intensity of the 
sample as compared to the intensity of Stationary Phase product band. Band intensities 
are calculated relative to the BCP band of the negative control lane. Original gel 
picture are shown in Figure B.2 and Figure B.3. 
 

Initial experimentation with ex vivo DNA assembly grew the E. coli 

cultures to saturation for two reasons. First, this is very convenient 

for the researcher as the E. coli culture can be prepared as an 

overnight culture and grown to saturation by the next day without the 
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need to constantly monitor the progress of the culture. Second, during 

the later stationary phase of growth the cell and genome are bombarded 

by accumulated waste products (free radicals, high pH)41,42. The damage 

inflicted upon the cellular DNA may thereby cause the cell to produce 

DNA repair enzymes useful for DNA end joining. However, the highest 

levels of DNA replication occur during exponential phase and may in 

fact contain elevated concentrations of DNA repair enzymes useful to 

DNA assembly. 

Based on previous observations of growth for NEB10β, we defined three 

different phases of growth, Early Exponential (EE), Late Exponential 

(LE) and Stationary phase (SP) represented by spectrophotometric 

measurements of optical density at 600 nm (OD600) of ~0.4, ~1.0 and 

>2.0, respectively. After harvesting the NEB10β grown to EE (OD600 = 

0.46), LE (OD600 = 0.92) and SP (OD600 = 2.75) in previously detailed 

culturing conditions, lysates were prepared by resuspending in a 3:1 

ratio of 2X CelLytic B (Sigma) detergent to pellet mass (e.g., 300 µL 

CelLytic for 100 mg of cell pellet), pelleting cell debris from lysis 

and diluting the soluble fraction 50% with glycerol. 

The results of 2-way linear assemblies using these lysates displayed 

in Figure 3.1 shows an improvement in EE and LE harvesting over lysate 

prepared from SP. However, this improvement is very slight. Since 

harvesting in the latter stages of growth affords more biomass (and 

therefore lysate) and is convenient for the researcher we will 

continue to harvest in the stationary phases of growth. 
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3.1.2. Rich (TB) versus Minimal (M9) 

Cellular physiology is inextricably linked to the extracellular 

environment. In a laboratory setting the extracellular environment is 

established by the physical (e.g., temperature and pressure) and 

chemical conditions of the growth medium. Under optimal conditions, E. 

coli will consume metabolites to increase biomass and replicate as 

quickly as possible. Conversely, under nutrient-limited or suboptimal 

conditions E. coli will reproduce at a more conservative rate as 

resources are reallocated to deal with environmental challenges. The 

rate of growth and extracellular conditions directly impact the 

production of enzymes involved in DNA reproduction and repair – 

including those putatively involved in the ex vivo DNA assembly 

process. 



www.manaraa.com

 

 

 

30 

 

Figure 3.2 Rich (TB) versus Minimal (M9) media 
Lysates prepared from cells grown in rich and minimal medias also show minimal 
difference in assembly efficiency, although minimal media showed a slightly larger 
increase in efficiency. Here, late exponential cultures had to be used because 
cultures grown in M9 media had trouble exceeding optical densities of 2.0 used as the 
marker of stationary phase. Fold difference represents the change in product band 
intensity as compared to Stationary Phase. Band intensities are calculated relative to 
the BCP band of the negative control lane. Original gel pictures are shown in Figure 
B.2 and Figure B.3. 
 

Previously, we grew our E. coli cultures to stationary phase (SP) in 

Terrific Broth (TB), a rich media very similar to the standard Luria-

Bertani (LB) media but containing increased amounts of tryptone and 

yeast extract, glycerol as an added carbon source and a phosphate-

based buffer system. This rich media allows growth to a much higher 

saturation than typical media such as LB. While we have used other 

rich media (LB, SOB, SOC; Data not shown) to prepare active lysates, 

here the activity of lysates prepared in TB were compared to those 
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prepared in M9 minimal media with glucose. As its name implies, a 

minimal media contains only the minimum nutrients necessary for 

bacterial growth, usually salts providing essential elements 

(Magnesium, Sulfur, Phosphate, etc…), a carbon source (e.g., glucose, 

sucrose, succinate) and water. In a minimal media environment nothing 

is “supplemented” to the cell so that all the essential metabolic 

pathways are active. 

Given that the NEB10β lysate appeared to have slight improvements in 

efficiency when harvested in LE and that when grown in M9 media NEB10β 

had trouble achieving cellular densities similar to that of our 

stationary phase cells grown in TB (OD600>2.0), we compared cells 

grown M9 to LE with cells grown in TB to LE. As in 3.1.1, the results 

of the 2-way linear assembly are interpreted as fold difference to 

lysates prepared in TB at SP. The lysates prepared in M9 media at LE 

show comparability with that of cells grown in TB to LE.  



www.manaraa.com

 

 

 

32 

3.1.3. Lysate Storage 

Table 3.1 Characteristics of Protein Storage Methods 

 
Storage Condition 

 
4°C 

50% Glycerol 
Solution at  

-20°C 

Frozen at  

-20°C or  

-80°C 

Lysophilized 

(usually at  

-20°C or  

-80°C) 

Typical Shelf 
Life 

Days to several 
weeks 

6 months to 2 
years Many years Many years 

Requires 
sterility or 
antimicrobial 

agent? 

Yes Usually No No 

Number of times 
sample may be 
removed from 

storage 

Many Many Once Once 

 

 

Proteins are a highly heterogeneous class of biological macromolecules 

with activities that are extremely dependent upon both their chemical 

composition and tertiary structure. Some proteins are even dependent 

upon their association with one or more other peptides. As such, 

maintaining the stability and activity of proteins outside of their 

native context can be challenging. If certain conditions are not 

adhered proteins may lose activity as a result of aggregation, 

proteolysis/microbial contamination and exposure to suboptimal 

thermochemistry. While the optimal conditions for storage vary between 

proteins43, Table 3.1 highlights several general guidelines for protein 

storage and stability. 



www.manaraa.com

 

 

 

33 

 

Figure 3.3 Glycerol negatively affects lysate activity 
From the same NEB10β lysates prepared at various growth stages, aliquots were saved 
prior to glycerol dilution and instead diluted with water. These are compared with 
their glycerol counterparts and show a significant improvement in assembly efficiency. 
Fold difference represents the change in product band intensity of the non-glycerol 
sample as compared to its glycerol-containing counterpart. Band intensities are 
calculated relative to the BCP band of the negative control lane. Original gel 
pictures are shown in Figure B.2 and Figure B.3. 
 
For our purposes, once the soluble fraction of our crude lysate is 

isolated, we dilute with an equal volume of 100% glycerol and store 

the samples at -20°C. To evaluate the prudence of glycerol addition, 

Figure 3.3 shows the results of testing freshly prepared NEB10β 

lysates diluted with either an equal part glycerol or equal part 

water. Glycerol would appear to have a significant impact on assembly 

efficiency, decreasing the formation of linear product approximately 

four-fold. 
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While such a drastic effect on DNA end-joining might be attributed to 

enzymatic origins (reduction in exonuclease, polymerase or ligase 

activities), it is interesting to note that there does not seem to be 

a difference in the degradation bands formed with or without the 

presence of glycerol. This means that a roughly equivalent amount of 

substrate ends are formed by the action of exonucleases, but these 

compatible substrates are not incorporated into the final product 

band. Granted, it could be that while the total degradation is 

equivalent the exonuclease is functioning differently. For example, 

restriction enzymes are known to have reduced substrate specificity 

(so called, “star activity”) for particular DNA sites in the presence 

of glycerol concentrations exceeding 5%44. It would appear that the 

glycerol might be interfering with the thermodynamics of base pairing 

between exposed homologous regions. This could make sense given that 

glycerol is able to decrease the hydration sphere around 

polynucleotides by competing with water to hydrogen bond with exposed 

base side groups and, perhaps for this reason, is used in 

electrophoretic buffers to help prevent DNA entanglement45. Indeed, 

prior investigation into ligases have shown that the electrostatic 

reduction of hydrogen bonding interactions experienced with increasing 

glycerol decrease the activity of the ligase but actually lead to an 

increase in the accuracy/specificity of the ends ligated together46. 

Although omitting the inclusion of glycerol is tempting due to it’s 

clear detrimental effect on lysate activity, it’s faculty as a 

cryopreservant provides convenience that – in our opinion – supersedes 
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this disadvantage. For instance, if glycerol was to be omitted from 

the lysate there are a few alternatives. Lysate could be aliquoted 

into tubes, frozen and only thawed immediately prior to use. However, 

this may be very wasteful as only 2 µL of lysate is needed per 

reaction so there is either a waste of freezer space as small aliquots 

are frozen in individual tubes or a waste of lysate as leftover thawed 

lysate is discarded. Lysates could also be freshly prepared before all 

assembly reactions; however, this is laborious and requires a culture 

of E. coli to be prepared ahead of time. For these reasons we have 

decided to continue to utilize glycerol as a cryopreservant agent and 

maximize the efficiency of lysis in order to have a very concentrated 

lysate. This way the lysate may be diluted prior to the reaction and 

thereby the final concentration of glycerol is diluted, as well. 

3.1.4. Detergents versus Autolysis 

In the previous section we noted that ultimately, it is desirable to 

have a concentrated lysate stock, which can be diluted prior to the 

assembly reaction. In the previous context it was in reference to 

reducing glycerol contamination, but concentrated protein samples are 

also more resistant to deactivation and loss due to interactions with 

the storage vessel. Generating a highly concentrated cell extract is 

predicated upon an efficient lysis method. 

Our current approach relying upon a chemical detergent means of lysis 

is efficient, compatible with small sample volumes and requires no 

specialized equipment. The detergents are non-toxic, non-denaturing 

and available as 1X, 2X and 10X concentrated formulations, so an 
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increased concentration can be employed to make even more highly 

concentrated cell extracts. However, the detergents suffer from 

several major drawbacks including the expense of purchase, a lack of 

transparency to their proprietary formulation and most of all, 

extensive toxicity toward the fragile competent E. coli utilized for 

transformation (Table 2.1). To address this major dilemma, we decided 

to investigate alternative methods to lyse our E. coli cultures. 

While a number of methods are commonly employed to lyse E. coli most 

are unsuitable. Thermochemical methods such as alkaline lysis and 

heat-lysis denature the necessary catalytic proteins and present 

conditions that may handicap downstream processes. On the other hand, 

physical methods of lysis using a bead basher, French press 

homogenizer or sonicator offer some of the highest lysis efficiencies 

with the greatest degree of flexibility in buffer composition, but may 

have minimum sample volumes, require vigilance to prevent denaturing 

of the sample and all require the purchase of specialized equipment. 

In response to the pitfalls inherent in each of the previous lysis 

methods, Zymo Research™ has created autolytic strains of E. coli. 

These strains contain an ingenious genetic design drawing upon the 

lysogenic system of the E. coli λ bacteriophage. Briefly, during the 

lytic phase of the λ bacteriophage life cycle the bacteriophage 

expresses two proteins. One protein (protein ‘R’) is an 

endolysin/lysozyme capable of cleaving the peptidoglycan bounds found 

in the cell wall47. The other protein is a holin (protein ‘S’) that – 

as its name implies – punches holes in the cell membrane48. Not only 
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does this disrupt the osmotic balance maintained by the selective 

permeability of the cell membrane but also releases the endolysin ‘R’ 

protein into the extracellular space where it can act upon the cell 

wall. In the XJa design the autolysis cassette only contains the 

endolysin ‘R’ gene that is driven by the araB promoter from the 

arabinose degradation operon. By adding arabinose (at ~0.2%) to the 

growing culture, the endolysin is produced at high level within the 

intracellular milieu where it is prevent by the cell membrane from 

acting upon the cell wall. Once ready, the researcher can freeze and 

thaw the culture (resuspended in buffer of choice) in order to lyse 

the culture. During the freezing of the cell, intracellular water 

crystallization damages the cell membrane performing the functions 

typical of the holin and releasing the endolysin to degrade the cell 

wall and lyse the cell. 

This autolysis cassette presents a unique approach to create a lysate 

in the buffer of choice, without expensive reagents or equipment and 

in a highly efficient fashion (Zymo reports lysis efficiencies >90% 

after one freeze-thaw cycle for the XJa strain)49. As such, we 

purchased the XJa strain that is derived from the ubiquitous cloning 

strain JM109. While this strain is genotypically different from 

NEB10β, from a phenotypic perspective as it relates to DNA, they are 

very similar. Like most cloning strains, JM109 (XJa) and NEB10β have 

mutations in endA and recA disrupting their endoplasmic DNA-specific 

endonuclease and homologous-recombination functions, respectively50,51.  

The endA mutation is important for protecting the integrity of any 



www.manaraa.com

 

 

 

38 

substrate DNA present in the lysate. In its natural context the in 

vivo secretion of EndA prevents the degradation of host episomal or 

genomic DNA, but once the membrane is lysed and removed in an ex vivo 

or in vitro context, any substrate DNA existing or subsequently added, 

assembled or circularized is an active substrate to be cleaved52,53. The 

recA mutation disrupts the cell’s ability to perform homologous 

recombination between repetitive sequences. This way episomal 

(plasmid) DNA is maintained as intended rather than recombined with 

themselves, other plasmids or the genome54,55. In addition they both 

have their restriction systems removed. Strain genotypes are displayed 

in Table A.2 with an explanation in Table A.3. 

To test the XJa autolysis for DNA assembly, we performed the growth 

experiments used for NEB10β and found that XJa performed similarly in 

2-way linear experiments to NEB10β (Figure B.2 and Figure B.3). Based 

on the results of the lysate negative controls from Table 2.1 the 

effects of autolysis lysates on electroporation were studied first. 
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Figure 3.4 Detrimental effects of detergents on electroporation 
3-way assemblies were performed using basic buffer and XJa autolysed or XJa detergent 
lysed and transformed into in-house prepared chemicompetent or electrocompetent 
NEB10β. (A) Colony forming units represent all colonies, regardless of color. (B) Fold 
improvement between colonies formed using electroporation versus chemical 
transformation. Error bars represent standard error of the mean for reactions 
performed in triplicate (N=3). 
 
 

Using two 3-way assemblies, one performed using a detergent-derived 

XJa lysate and one using an autolysis-derived XJa lysate, the 

resulting assemblies were transformed into in-house prepared 

chemicompetent and electrocompetent NEB10β. The results of these 

transformations, as well as transformations of pUC19 control DNA, are 

depicted in Figure 3.4. The first thing to note about this experiment 

is that the concentration of lysate in the transformation reactions is 

significantly lower than those performed in Table 2.1 previously and 

so detergent associated toxicity effects should be expected to be less 

pronounced in turn. Still, there is clearly a dramatic difference 

between electroporation efficiencies of lysates. Contrasting the 
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chemical transformations in Figure 3.4.A, the autolysis reaction 

appears to have been more efficient than the detergent reaction 

(either in actual assembly or detrimental effects on transformation) 

but the overall colony forming units (CFU) per femtomole appear to be 

comparable. However, when looking at the electroporation results there 

is a clear effect of detergents which is more succinctly stated in 

Figure 3.4.B as fold difference between chemical transformation and 

electroporation. It is also interesting that autolysis seems to have a 

more pronounced difference in electro- versus chemical transformation 

than that of the pUC19 positive control however, the pUC19 controls 

may underestimate the fold improvement of electroporation. Typical 

efficiencies reported by NEB for their commercially prepared NEB10β 

chemicompetent and electrocompetent cells would place the improvement 

at roughly ten-fold, matching the observed improvement seen for 

autolysis transformation. 

3.2. Optimizing the ex vivo DNA assembly reaction 

The ‘chew-back, anneal, repair’ end joining mechanism hypothesized to 

be the biochemical basis of the ex vivo reaction is an interestingly 

complex optimization problem. While exonuclease activity is 

imperative, overly active exonuclease activity can destroy the 

substrate DNA. Additionally, since dsDNA exonuclease activity cannot 

be constrained a competitive polymerization reaction must be 

introduced to ‘repair’ uncontrolled exonuclease activity, but not so 

much as to undo the requisite ‘chew-back’. Several parameters of the 
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ex vivo reaction were empirically investigated for their impact on 

this delicate balance. 

3.2.1. Reaction Volumes and DNA Concentrations 

In its original formulation, ex vivo DNA assembly was performed using 

20 µL volumes with 20 ng/µL of the backbone (or larger BCP piece for 

linear assemblies) and a 6:1 molar ratio of insert fragments to 

backbone piece. While PCR and gel extraction easily generates enough 

substrate DNA for a couple reactions, each assembly reaction is 

consuming over a full microgram of DNA per reaction. Additionally – 

while able to distinguish background colonies by their red coloration, 

there was an exceptional amount of red colony formation for gel-

purified substrates. To address these issues we made a concerted 

effort to not only reduce the DNA required for an ex vivo reaction and 

the amount of red background colonies. 

First, the background was addressed by looking at our DNA preparation 

steps. The bands from our PCR reactions looked very strong and free of 

side-product formation yet somehow considerable template plasmid was 

co-purified with our backbone amplicon. Looking at our protocol for 

PCR we noted that for simplicity we had been adding 1 µL of pure 

plasmid mini-prep as template for a 50 µL reaction. Concentrations of 

our mini-preps usually range between 50-100 ng/µL for the high-copy 

plasmids used by ex vivo DNA assembly. Given that NEB protocols for Q5 

DNA polymerase call for a maximum of 1 ng of plasmid template per 50 

µL reaction we were adding 50 to over 100 fold excess template DNA 

necessary for PCR. In response, working dilutions of template plasmid 
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at 1 ng/µL were prepared and PCR performed in the same fashion. 

Resultant gels still showed very bright banding indicative of 

successful PCR and eluents from gel extractions contained equivalent 

concentrations of DNA. However, assemblies and subsequent showed a 

drastic decline in the number of red colonies (~0-2 colonies per 

plate). 

Next, the concentration of DNA used in a typical reaction was 

decreased along with the total volume of each reaction. Instead of a 

20 µL volume, 20 ng/µL backbone and a 6:1 insert to backbone molar 

ratio, reactions were performed in 10 µL volumes using 5 ng/µL 

backbone (50 ng per reaction) and a 1.2:1 (2-way assemblies) or a 

2:1.2:1 (3-way assemblies) molar ratio. This increased the number of 

reactions capable of being performed per preparation of DNA fragments 

by 4-fold (50 versus 200 ng backbone per reaction). 

3.2.2. Calculating Protein Concentration 

By reducing the DNA substrates used in each reaction and increasing 

our lysate concentrations (lysis efficiencies), we found many of 

initial reactions degraded most or all of the substrate DNA. The 

reduced substrate and increased catalyst concentrations had tipped the 

delicate balance between chew-back and repair making it clear 

adjustments to the lysate concentration were needed. Unfortunately, 

quantifying the “concentration” of the catalysts for ex vivo DNA 

assembly poses a challenge. First, the cellular extract is a highly 

heterogeneous environment with many species capable of interfering 

with quantification. Second, even if the responsible catalysts were 
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capable of being specifically quantified their identities still remain 

largely unknown. Even so, measures of total protein concentration were 

employed as a proxy since the catalysts are almost certainly proteins. 

The most common techniques for estimating the concentration of 

proteins are based on either a colorimetric reaction (e.g., Lowry56, 

Bradford57) or UV absorbance spectrophotometry (absorbance at 280 nm)58. 

Deciding on the most appropriate method depends upon multiple factors 

including the concentration of protein in the sample, the amino acid 

composition of the peptide and the presence of interfering substances 

in the sample or buffer. For the ex vivo extracts Bradford 

colorimetric assays were compared with simple spectrophotometric 

absorbances of 280 nm for aromatic rings of amino acid side chains 

(mainly tyrosine and tryptophan), 260 nm for nucleic acids and/or 205 

nm for peptide bonds.  

Standard curves were generated for Bradford colorimetric assays using 

either Bovine serum albumin or lysozyme, at a minimum of three 

different quantities (along with blanks) in either water, the CelLytic 

detergent or the lysis/storage buffer matching the lysate samples used 

in the assay. While the Bradford reaction is typically incompatible 

with detergents, we found that the diluted samples still generated an 

acceptable standard curve. However, the concentrations of the lysates 

predicted by the Bradford (as could be expected) was dependent upon 

the protein used to calibrate the standard curve, the time allowed for 

color development and even the spectrophotometer used. Additionally, 
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the assay requires the purchase of reagents and standards and a fairly 

time-consumptive, fickle protocol to measure samples and standards. 

The difficulties posed by the Bradford assay prompted a simplified 

approach to concentration estimation. Peptide bonds can be detected in 

solution using absorbance at 205 nm59, but when tested with lysate the 

assay was found to be overly sensitive, inviting error from extensive 

dilutions. Protein content can also be estimated using absorbance at 

280 nm targeting the aromatic side chains of amino acids such as 

tryptophan and tyrosine. The challenge faced in a cellular extract 

context is interference from nucleic acids that also absorb in the 280 

nm spectra. To correct for the presence of nucleic acids in the lysate 

absorbance at 260 nm was measured and a correction applied using the 

equation of Warburg and Christian58. While Warburg-Christian method is 

also susceptible to interference (e.g., NAD/NADP) it was found to be 

rapid, requiring minimal sample manipulation and having high 

reproducibility (for one sample diluted and measured in triplicate 

standard error of the mean = 0.012 mg/mL). 
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Figure 3.5 Concentration of Lysate 
Here XJa lysate prepared by autolysis was measured via spectrophotometry and adjusted 
by the method of Christian-Warburg. Product Band intensities are calculated relative 
to the BCP band of the negative control lane. Gel picture for 60 minutes is in Figure 
B.4 and 120 minutes is in Figure B.5. 
 
Applying the Warburg-Christian method to quantify our lysates a 2-way 

linear assembly was performed using titrations of autolysis-derived 

XJa lysate. Samples were removed at 60 minutes and after a full 120 

minutes, visualized and interpreted in Figure 3.5 as the intensity of 

the product band. While in the first 60 minutes there is a product 

band formation at all tested concentrations, the second 60 minutes 

distinctly contribute a large portion of the final bands. This could 

be evidence that most of the “repair” activities do in fact precede in 

the second half of the 120-minute reaction. However, at higher 

concentrations of lysate the product bands produced in the initial 60 

minutes are consumed, likely by the additional exonucleases present in 
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the reaction. Looking at the results of the gel it would appear that 

the optimal final protein concentration of the autolysis lysates is 

between 10-50 µg/mL. Since our stocks of lysates produced via 

autolysis were measured at ~7-8 mg/mL, a 10X concentration could be 

reached by a 1/200 dilution of the lysate. 

3.2.3. “Base” Buffer Optimization 

In order to function many enzymes rely on the presence of cofactors 

and various energy sources. In section 2.2 the effects of Magnesium-

to-ATP concentration were investigated and the results revealed an 

important relationship between the relative quantities of magnesium 

ions and available ATP. Beyond these two components of the reaction 

buffer, the other components were not varied but may illicit 

improvements in the overall reaction efficiency. 

We tested the formulation of the ex vivo DNA assembly buffer with a 

few changes to more closely match buffer formulations optimal for 

purified E. coli enzymes, in particular for the E. coli DNA ligase 

(Eco Ligase). For all buffers tested the NAD+ was reduced to 50 µM 

(typically 26 µM for Eco Ligase) and Bovine Serum Albumin (BSA) at 50 

µg/mL. Further the Magnesium and ATP levels were, once again, titrated 

between 4 mM Magnesium and 50 µM ATP.  
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 + 1 2 3 4 

Tris-HCl, 50 mM 50 mM 50 mM 50 mM 50 mM 

DTT 1 mM 1 mM 1 mM 1 mM 1 mM 

MgCl2 10 mM 10 mM 4 mM 4 mM 10 mM 

ATP 1 mM 1 mM 1 mM 50 µM 50 µM 

βNAD 1 mM 50 µM 50 µM 50 µM 50 µM 

BSA 0 µg/mL 50 µg/mL 50 µg/mL 50 µg/mL 50 µg/mL 

Figure 3.6 Optimization of components of “Base” Buffer  
The components of the base buffer were varied between their original values and values 
commonly used for the buffers of various molecular biology enzymatic reactions. Fold 
difference represents the change in product band intensity of the sample as compared to 
“+” sample of the same lysate type. Band intensities are calculated relative to the BCP 
band of the negative control lane. Original gel pictures are shown in Figure B.6 and 
Figure B.7. 
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increase in assembly efficiency with the addition of BSA and decrease 

in NAD+. In fact, XJa showed an increase in all tested conditions over 

the standard buffer. Unfortunately, without additional replicates it 

is unclear whether the observed trend is due to differences in the XJa 

autolysis lysate versus the NEB10β detergent lysate or a function of 

fluctuations in the standard lane. 

3.2.4. Divalent Metals Titrations 

Throughout biochemistry metal ions play an integral role as enzymatic 

cofactors. In fact, it has been estimated that metal ion cofactors are 

needed in nearly one-third of enzyme-catalyzed reactions60. Most often 

these metals are coordinated within the active site of enzymes where 

they mediate redox (and sometimes non-redox) reactions by increasing 

the electrophilicity of the active site. Once a ligand is bound in the 

active site, the metal can act to remove electron density and cause 

polarization of reactive bonds in the ligand - usually C-O or P-O in 

nature61. 

As the most abundant divalent metal species in cellular contexts, 

magnesium is the most frequently utilized metal in active sites. As 

discussed previously, in physiologic environments magnesium forms 

stable chelates with molecules containing phosphate such as ATP, RNA, 

DNA and other nucleic acids. The tendency of magnesium to maintain 

elevated hydration states is the primary means by which it acts as a 

cofactor to bind and catalyze nucleic acid substrates61. 
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Due to its poor spectroscopic and crystallographic properties 

researchers have long employed other divalent metal analogues to study 

nucleic acid enzymology. While analogues such as zinc, calcium and 

most often manganese are acceptable for structural studies, these 

metals often display differing biochemistries to magnesium62. In fact, 

it is often observed that other transition metals, especially 

manganese, coordinate more tightly with active sites and thereby 

confer higher levels of activity. In other instances, the alternate 

metal can change the coordination geometry or structural conformation 

of the active site altering the substrate specificity, mode of action 

or completely inhibiting the protein. 
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Figure 3.7 Titrations of Divalent Metal Cations 
This figure shows the titration of Zinc Chloride, Manganese Chloride and Calcium 
Chloride with Magnesium Chloride and without Magnesium Chloride. Fold difference 
represents the change in product band intensity of the sample as compared to “+” 
sample (10 mM Magnesium) of the same lysate type. Band intensities are calculated 
relative to the BCP band of the negative control lane. Original gel pictures are shown 
in Figure B.8, Figure B.9 and Figure B.10. NEB10β is the average of duplicate 
experiments and error bars represent standard error of the mean (N=2). 
 
Previously, we established that the ratio of Magnesium-to-ATP in the 

ex vivo DNA assembly buffer was crucial for efficient end joining, 

most likely as a consequence of ATP’s ability to chelate magnesium and 

the resulting effects on RecBCD activity. Although magnesium dominates 

as the native cofactor for nucleic acid-directed enzymes, we decided 

to test the effects of titrating zinc, manganese and calcium on the 

efficiency of end joining. 

Using XJa (autolysis) and NEB10β (detergent) four formulations of each 

metal were tested with respect to magnesium (mM:mM): 1:10, 10:10, 1:0, 
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10:0. The results of this 2-way linear titration depicted in Figure 

3.7 are compared to a control reaction with the ex vivo DNA assembly 

“base” buffer. Just as in the “base” buffer optimization in 3.2.3 

there are clearly differing trends seen for the NEB10β/detergent and 

the XJa/autolysis lysates – although there is also some agreement 

between the two, as well. Both lysates responded negatively to Zinc in 

the complete absence of magnesium, while both responded positively to 

the addition of manganese – even in the complete absence of magnesium. 

XJa actually shows an increase in efficiency across all tested 

conditions so long as 10 mM of magnesium was present. Perhaps more 

surprising is that for both manganese and calcium XJa showed 

equivalent or higher activity even in the absence of magnesium. On the 

other hand, outside of manganese NEB10β clearly did not tolerate the 

omission of magnesium. The extremely pronounced response to manganese 

by both lysates prompted further investigation into the 

supplementation of manganese to the standard ex vivo DNA assembly 

buffer.  

3.2.5. Manganese 

The strong activation of DNA assembly imparted by manganese in the 

titrations of the previous section (3.2.4) prompted a more detailed 

study of manganese. Using a similar titration approach between 

magnesium and manganese, 2-way linear assemblies were performed using 

NEB10β lysate. Again, Figure 3.8 shows a comparison of the titrated 

samples relative to the intensity of the product band formed by the 

basic ex vivo DNA assembly buffer containing 10 mM magnesium and 0 mM 
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manganese. In the experiment, total divalent species were held at 10-

11 mM with the exception of the 0:2 and 0:6 magnesium:manganese 

(mM:mM) samples. In Figure 3.9, the results are displayed again, but 

showing the compositions of the lane by band (product band; BCP and 

Promoter substrate bands and; degradation band of lowest molecular 

weight) relative to the BCP band of the negative control lane (-).    

 

Figure 3.8 Titrations of Magnesium and Manganese 
Using NEB10β lysate and the 2WL assembly, magnesium and manganese levels were titrated 
against one another. The ratio labels indicate the concentration of magnesium chloride 
(mM) to manganese chloride (mM) with the 10:0 ratio representing the original buffer 
constitution (+). Fold difference represents the change in product band intensity of 
the sample as compared to “+” sample of the same lysate type. Band intensities are 
calculated relative to the BCP band of the negative control lane. Original gel picture 
is shown in Figure B.11. 
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Figure 3.9 Lane composition of Manganese to Magnesium Titration 
Chart shows the relative intensities of the product (Blue), BCP (Red) and Promoter 
(Green) substrate bands, as well as the low molecular weight band representing 
degradation products (Purple). Columns are displayed inverted to more closely 
represent the actual gel and the order in which the bands migrate. Band intensities 
are calculated relative to the BCP band of the negative control lane. Original gel 
pictures are shown in Figure B.11. 
 
The results of the 2-way assembly – albeit less pronounced - confirm 

the observed increase in assembly efficiencies previously observed in 

the metal titration experiment. The ratio of magnesium to manganese 
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lanes containing the highest level of product. Further, both lanes 

containing 10 mM manganese (1:10 and 0:10) appear to have the most 

total DNA in the lane overall. This phenomenon is more than likely 

attributed to increased DNA polymerase activity in the presence of 

manganese. Indeed, the literature is ripe with evidence showing that 

in the presence of manganese DNA polymerases (including the E. coli 

PolA polymerase) experience a decrease in specificity of base 

incorporation as well as 3’-5’ proofreading functions. Such a decrease 

in specificity may increase the polymerase activities not only to gap-

fill the product fragment, but also the chew-backed, partially 

degraded substrate bands thereby preserving them. 



www.manaraa.com

 

 

 

55 

 

Figure 3.10 Effect of Manganese on Two-way Circular Assembly 
Using XJa lysed with either CelLytic or using freeze-thaw autolysis, circular 
assemblies were performed in the original buffer (- Mn) or with the addition of 1 mM 
Manganese Chloride (10:1 ratio). Percentages represent Blue colonies to all colonies 
(blue and white). Error bars represent standard error of the mean for reactions 
performed in duplicate (N=2). 
 
If the presence of the manganese is mutagenizing the recombined 

product then its addition – regardless of the improvements in apparent 

end joining – are undesirable for cloning. However, the 2-way linear 

assay has no way of revealing incorporated mutations. To reveal any 

increases in mutation rates as a result of manganese supplementation 

shows the results of 2-way circular assemblies with and without 1 mM 

manganese. The results still show an increase in total colonies formed 

across all lysates, but an increase in mutation rate is not 

immediately apparent. This does not necessarily mean there is not an 

increase in mutation rate from the addition of magnesium, because the 

number of white colonies falls outside the countable threshold (<30 

CFU per plate) for XJa autolysis and NEB10β. For the XJa detergent 
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sample that did have a countable number of white colonies there was a 

decrease in percentage of correct colonies. 
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Chapter 4. Probing ex vivo DNA Assembly 

with Enzymatic Titrations 

The absence of the cell membrane allowed rapid prototyping of buffer 

compositions, substrate and catalyst concentrations, and titrations of 

small molecules. To uncover biochemical mechanisms typically enzymes 

are purified and titrated together in an in vitro study or knocked-

out/overexpressed in an in vivo study. Both of these approaches can be 

leveraged in ex vivo experimentation to uncover underlying phenomena 

of the larger system. 

4.1. Enzymatic Titrations 

Tapping into the wealth of commercially purified cloning enzymes 

already available through molecular biology suppliers, the underlying 

biochemistry of ex vivo DNA assembly was probed using enzymatic 

titrations. Building on the premise that the ex vivo DNA assembly 

reaction proceeds via a chew-back, anneal and repair pathway similar 

to Gibson assembly, we purchased available exonucleases, polymerases 

and ligases (as well as RecA, a homologous recombination protein) 

native to E. coli. Table 3.1 gives details about each enzyme used in 

the titration experiment. 
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Table 4.1 Enzymes used in Titration 

 
E. coli gene Function Product(s) 

Exonuclease III xthA  
3' to 5' dsDNA 
exonuclease ssDNA and dNMP 

RecJf recJ 
5' to 3' ssDNA 
exonuclease dNMP 

Exonuclease I   xonA/sbcB  
3' to 5' ssDNA 
exonuclease 

dNMP and 
dinucleotide 

Exonuclease T exoT 3' to 5' ssDNA and 
RNA exonuclease 

dNMP 

Exonuclease V 
(RecBCD) 

recBCD dsDNA processive 
endonuclease 

short oligos 

E. coli DNA Ligase ligA DNA ligase phosphodiester 
bonded DNA 

DNA PolI polA DNA polymerase DNA polymer 

RecA recA ssDNA binding 
protein N/A 

 

 

The addition of exonucleases can help elucidate the possible overhangs 

generated from chew-back. For example, if homologous overhangs were 

generated as 5’ overhangs, it would be expected that supplementing 

RecJf would greatly decrease assembly efficiencies, as the homologous 

regions are substrates for degradation by RecJ. The three non-

nucleases – E. coli Ligase, Polymerase I and RecA – are supplemented 

to see if they address a bottleneck or inefficiency. 
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Figure 4.1 Titrations of Various DNA cloning Enzymes 
The results of titratons of various purified enzymes in XJa lysates are shown. The bar 
colors reflect concentration of enzyme with blue, red and green reflecting the 
concentrations lowest to highest. Red represents units necessary to catalyze the 
formation of 10 nmol of product in a 20 µL reaction – except for RecA which had no 
unit definition. Unit definitions are available in Table A.4. Units were added as 
follows: RecBCD (.05, .2, .4); PolI (.1, .4, 1); RecA (2, 8, 20 µg); Eco Ligase (.1, 
.4, 1); ExoI (.1, .4, .8); ExoIII (1, 4, 10); ExoT (5, 20, 50); RecJ (30, 120, 300). 
Fold difference represents the change in product band intensity of the sample as 
compared to “+” sample (no enzyme). Band intensities are calculated relative to the 
BCP band of the negative control lane. Original gel pictures are shown in Figure B.12 
and Figure B.13. 
 
To determine relevant concentrations for each enzyme, the unit 

definitions provided by NEB were employed to calculate the number of 

units necessary to catalyze the formation of 10 nmol of product in a 

20 µL reaction volume (5 ng/µL BCP is approximately 11 nmol). These 

values were used as a baseline to select three concentrations of each 

enzyme to test in conjunction with a 2-way linear assembly. 
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Results of the assembly shown in Figure 4.1 were unexpected for 

several reasons. The most glaring outcome is the stimulating effect of 

ExoI and ExoT on assembly. It was not expected that any of the 

exonucleases would improve assembly as this has not presented as a 

rate-limiting step and can be a substrate sink if homologous ends are 

consumed. Clearly, for the 3'→5' ssDNA exonucleases ExoI and ExoT (at 

low quantities) the homologous overhangs are not being consumed. This 

is made clearer by Figure 4.2, which shows the lane composition of the 

titration. By looking at the lane composition and status of the 

substrate DNA, the activities of the various enzymes become clearer. 

For instance, it is very clear that the lack of product formation in 

the dsDNA exonuclease lanes is a direct result of consuming the 

substrate DNA. In contrast, RecJ appears inefficient at assembly not 

because it is consuming the substrate DNA, but for some other reason. 

It is very possible that the homologous overhangs produced during the 

ex vivo DNA assembly are 5’ extensions. These extensions would be 

compatible substrates for degradation by RecJ resulting in a loss of 

the necessary homology and the creation of inert substrate DNA. 

However, it is also important to realize that these graphs are still 

numerical interpretations of the gel results. In the case of ExoT, 

without looking at the gel picture (Figure B.13) it would be nearly 

impossible to observe the decreasing resolution and molecular weight 

of the product band due to extensive degradation. 
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Figure 4.2 Lane Composition of Enzymatic Titration 
Chart shows the relative intensities of the product (Blue), BCP (Red) and Promoter 
(Green) substrate bands, as well as the low molecular weight band representing 
degradation products (Purple). Columns are displayed inverted to more closely 
represent the actual gel and the order in which the bands migrate. Band intensities 
are calculated relative to the BCP band of the negative control lane. Original gel 
pictures are shown in Figure B.12 and Figure B.13. 
 
In the non-exonuclease category, improvements were observed using E. 

coli DNA ligase and RecA while addition of the DNA polymerase I 

inhibited assembly. Looking at the composition of the PolI lane the 

substrate fragments are maintained. The PolI protein has dual 

exonuclease activities: a 3'→5' proofreading activity typical of DNA 

polymerases and a 5'→3' exonuclease activity most likely used for nick 

translation. Similar to RecJ, the presence of substrate DNA and known 

5'→3' activities suggests that PolI may be consuming the homology of 

the overhangs. 
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4.2. RecA Titrations 

Improvements in end joining in the presence of RecA was surprising as 

previous investigation revealed that recA+ strains of E. coli are 

suboptimal for ex vivo DNA assembly. RecA is a highly multifunctional 

protein in vivo, acting as an ssDNA binding protein63, catalyzing 

strand exchange64 and even acting as a highly specific protease (of the 

LexA protein) to signal the host SOS response to DNA damage65,66. 

Mechanistically, RecA performs its DNA recombination functions by 

binding tightly to ssDNA in long nucleoprotein filaments. Once bound 

to a ssDNA substrate (and ATP) RecA’s secondary DNA binding site will 

bind to a dsDNA polymer and begin a “homology search” scanning across 

the dsDNA substrate for sequence matching the ssDNA. Once found, the 

RecA nucleoprotein filament can catalyze strand exchange and the 

formation of an intermediary triplex DNA64. Given the unique 

contradiction seen between in vivo produced RecA and ex vivo 

supplemented RecA further titration experiments were performed. Using 

the 2-way linear assembly, Figure 4.3 and Figure 4.4 show the results 

of RecA supplementation in a 20 µL reaction using XJa autolysis 

lysate.   
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Figure 4.3 Titrations of RecA 
RecA protein was added to an XJa lysate in a 2-way linear assembly. Fold difference 
represents the change in product band intensity of the sample as compared to “+” 
sample (no enzyme). Band intensities are calculated relative to the BCP band of the 
negative control lane. Original gel picture is shown in Figure B.14 
 
The repeated RecA titration showed a similar trend to that observed in 

the initial titration as additional RecA facilitates end joining in 

the two-way linear assembly. Although, it would appear that at a 

certain point the concentration of RecA becomes saturating – possibly 

even reducing assembly efficiency (as in Figure 4.1). The normal 

function of RecA to recombine ssDNA with a dsDNA substrate is not the 

same single-strand annealing method proposed earlier, but is clearly 

aiding in assembly. Again, looking at the lane compositions in Figure 

4.4 it would appear that RecA helps to protect the substrate DNA from 

degradation as the total band intensity of the RecA lanes exceed that 

of the positive control lane.  
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Figure 4.4 Lane composition of RecA titration 
Chart shows the relative intensities of the product (Blue), BCP (Red) and Promoter 
(Green) substrate bands, as well as the low molecular weight band representing 
degradation products (Purple). Columns are displayed inverted to more closely 
represent the actual gel and the order in which the bands migrate. Band intensities 
are calculated relative to the BCP band of the negative control lane. Original gel 
pictures are shown in Figure B.12 and Figure B.13. 
 
Finally, RecA was supplemented to 2-way circular assemblies, 

transformed and the resulting colony counts compiled into Figure 4.5. 

It would appear that there is another dynamic happening here – either 

during circularization or transformation – which decreases the 

efficiency of assembly for the circular assembly. Moreover, with 

“homology search” functions of RecA it was disappointing to find that 

RecA contributed nothing toward improving the mutation rate of 

assembly either.   
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Figure 4.5 Colony counts of exDA reactions containing RecA 
Assemblies were performed using basic buffer or supplemented 200 ng RecA using 
autolysed XJa or XJa lysed with detergents. Percentages represent Blue colonies to all 
colonies (blue and white). Error bars represent standard error of the mean for 
reactions performed in duplicate (N=2). 
 

4.3. Strain Engineering (nuc4- and autolysis cassette) 

Just as previously purified enzymes can be supplemented to the ex vivo 

reaction to synthetically test the effects of increased protein 

concentration, the genetic background of the strain can be altered to 

knockout the expression of native enzymes. Strain engineering or 

‘recombineering’ (short for recombination-mediated genetic 

engineering) uses transformed DNA with homology to the host genome in 

order to target and integrate changes into the chromosome67. In E. coli 

this can be accomplished by the Lambda Red operon of bacteriophage 
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lambda68. This three-protein operon encodes a 5’-to-3’ exonuclease 

(alpha), a single-strand annealing protein (beta) and a protein, which 

binds and inhibits RecBCD activity (gamma). For both the native 

bacteriophage’s linear dsDNA genome or transformed ds/ssDNA the Lambda 

Red system works by inhibiting RecBCD (preventing degradation of 

substrate DNA), converting the dsDNA to a fully single-stranded 

intermediate and annealing the subsequent ssDNA to homologous regions 

of the genome exposed as ssDNA during DNA replication69,70. Genomic 

changes can be selected if the targeting DNA integrates a selectable 

marker cassette (i.e., antibiotic resistance), otherwise colonies must 

be plated and screened via a high-throughput genotyping method like 

allele-specific PCR71,72. 

Given the promising applications of genome engineering considerable 

effort has been invested in optimizing Lambda Red and other 

methodologies (e.g., homologous recombination, RecET, CRISPR-Cas)15,67,73-

76. The Church group pioneered a Lambda Red recombineering method to 

make many changes across the genome in an automated fashion known as 

‘Multiplex Automated Genome Engineering’ (MAGE) using a closed-loop 

device to grow/recover cells, induce Lambda Red from a heat-inducible 

operon on the E. coli genome, and transform a solution of editing 

oligonucleotides77-79. In an effort to optimize MAGE this same group 

employed MAGE to knockout the most active E. coli ssDNA exonucleases 

(RecJ, ExoI, ExoVII and ExoX) creating a strain known as nuc4- 

(Genotype in Table A.2 and Table A.3), which they subsequently 
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deposited into the Addgene repository (Addgene bacterial strain 

#40803)80. 

We acquired the nuc4- strain from Addgene in order to test its 

suitability as a strain for ex vivo DNA assembly with the underlying 

assumption being that these exonucleases may compete to degrade 

exposed homologies. Since this strain contained the Lambda Red system 

we decided to integrate the lysis cassette from the XJa strain to 

create and autolysis version of the nuc4-, which we dubbed nuc4-.λR 

(for Genotype and description see Table A.2 and Table A.3; for oligo 

sequences see Table C.3). 
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Figure 4.6 ex vivo DNA Assembly with nuc4-.λR and Lambda RED 
Assemblies were performed using original buffer, supplemented with 1 mM Manganese or 
200 ng RecA using autolysed nuc4-, nuc4- with λ Red or XJa. Percentages represent Blue 
colonies to all colonies (blue and white). Error bars represent standard error of the 
mean for reactions performed in duplicate (N=2). 
 
Once isolated, the nuc4-.λR strain was used to create two lysates. One 

lysate was prepared by the same methods as XJa (-λRED), while the 

other was heat-shocked to induce production of the Lambda Red proteins 

(+λRED) as other studies have shown the Lambda RED system capable of 

facilitating DNA assembly13,81. The resulting lysates were used to 

perform 2-way assemblies with the standard buffer, with Manganese and 

with RecA (Figure 4.6). We were disappointed to find that our nuc4-.λR 

showed no improvement over the standard XJa reaction under any tested 

conditions with or without the inclusion of the Lambda RED system. 
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Unfortunately, it is impossible to infer the direct relationship 

between the genotypic changes in nuc4-.λR and their impact on DNA 

assembly due to the absence of proper control strains. To clarify, we 

saw in the enzyme titration (Figure 4.1) that ssDNA exonucleases can 

have strong stimulating or inhibitory impact on DNA assembly. nuc4-.λR 

has four ssDNA exonucleases knockout, including one shown to stimulate 

DNA assembly (ExoI) and one shown to inhibit it (RecJ) in the enzyme 

titration experiments. Moreover, the parental strain (E. coli MG1655) 

that nuc4-.λR is derived from does not have the mutations in endA and 

recA like the cloning strains used throughout this study. While MAGE 

oligonucleotides were purchased to disrupt endA and recA via Lambda 

RED recombineering (sequences in Table C.3), we were never able to 

identify clones containing the mutant alleles. Without progressive 

knockouts of the ssDNA exonucleases with background mutations in the 

recA and endA loci to use as controls it is impossible to make direct 

conclusions about the effect of each knockout as it pertains to DNA 

assembly.  
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Chapter 5. ex vivo PCR and ex vivo Cloning 

5.1. The pUN plasmid and ex vivo PCR 

Using lysates derived from completely “wild-type” strains it is 

possible to perform sophisticated in vitro reactions such as protein 

expression or DNA assembly. As demonstrated in the previous section, 

the background genotype of the E. coli can be easily manipulated using 

modern genome editing tools to investigate genotype-phenotype 

relationships or create strains with phenotypic enhancements (i.e., 

autolysis). In a similar but perhaps simpler manner, expressional 

plasmids can be constructed and transformed into existing strains to 

produce one or more proteins (or even mRNA). Plasmid-based expression 

allows rapid introduction into the various strain backgrounds without 

the challenges required to integrate cassettes into the genome. We 

refer to lysates containing an (over)expressed protein(s) as a 

‘functionalized lysate’, as a novel function has been imparted to the 

lysate. The following chapter demonstrates a functionalized lysate 

containing the Pyrococcus furiosus (Pfu) DNA polymerase that has the 

newly imparted ability to perform PCR. This functionalized lysate is 

then applied to amplify the fragments for 2- and 3-way assemblies, 

which are subsequently assembled and transformed using our ex vivo DNA 

assembly approach. 
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5.1.1. Design and construction of the pUN plasmid 

Many plasmids have been developed and are available through numerous 

for- and not-for-profit distributors. These plasmids usually have 

features associated with specialized purposes such as clonal 

amplification, protein expression, interspecies transfer or phage 

production. Traditionally features are included which facilitate 

cloning/DNA assembly such as multiple cloning sites, integrase sites 

(Gateway cloning) or counter-selectable markers82. 

Up to this point, ex vivo assembly and its assays employed the 

commonly used high-copy number Biobrick plasmids, pSB1C3 and pSB1K3 to 

conduct assembly assays. These plasmids are freely distributed under a 

creative commons license and are fully compatible with the ‘Biobrick 

AssemblyTM cloning methodology. However, we decided to design and 

develop our own vector useful for expression and cloning via ex vivo 

DNA assembly and other sequence-independent cloning methods. 

The plasmid backbone was derived from the pJ251-GERC vector available 

in the Addgene repository (Addgene plasmid #47441)83. The backbone 

fragment (amplified by pGERC_BB-f/-r; see Table C.2) contains the 

Kanamycin resistance selectable marker and the low copy number p15a 

origin of replication (~5-10 copies per cell). The second-half, 

‘insert’ portion was synthesized as two linear fragments by Integrated 

DNA Technologies (IDT) and contains all the designed cloning and 

expressional features. The ‘insert’ design draws heavily upon the 

“Unique Neutral Sites” (UNS) developed by Torella, et al84. A UNS is a 

computationally derived 40 base pair site that meets several design 
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criteria including: approximately 50% GC-content without homopolymeric 

runs; Unfavorable intramolecular (hairpins) and intermolecular 

(bonding between different UNSs) interactions; absence of common 

restriction/cloning sites; absence of start codons, promoter-like 

sequences or sequence homology to the E. coli MG1655 genome. The 

authors reported 10 UNSs that were subsequently demonstrated to 

assemble multiple repeated sequences via Gibson assembly and even 

provided functional insulation of promoter sequences from genetic 

context. In our design, some of these UNSs are incorporated throughout 

the insert separating each of the following features (in order from 5’ 

to 3’): an upstream terminator; a T5 promoter and 5’ untranslated 

region with a ribozyme; a newly optimized BCP cassette driven by a 

strong constitutive promoter and synthetic ribosome-binding site (RBS) 

and; two strong downstream terminators (sequence available in C.2.6). 

The design of the insert was such that the new BCP cassette can be 

replaced with a desired RBS and protein coding sequence (CDS) and be 

driven by the strong upstream T5 promoter. Since the original BCP 

insert causes a very strong (and quicker developing) blue 

pigmentation, assemblies can be screened for the presence of 

background colonies. Unfortunately, we have found that the upstream 

promoter does not transcribe through the downstream UNS site so 

currently a promoter needs to be included with expression assemblies.  

However, it is from the UNS sites that our plasmid derives its 

namesake, pUN (for “plasmid unique neutral”). The embedded UNS sites 

play a critical role not just for simplifying assembly and insulating 



www.manaraa.com

 

 

 

73 

parts as demonstrated by the original authors, but as ideal priming 

sites for PCR. For all the reasons the UNS sites make excellent 

termini for assembly reactions, these sites are also ideal primer 

sequences for amplification or as 5’ embedded overhangs. Indeed, we 

designed and synthesized forward and reverse primers for each UNS site 

(sequences available in Table C.2) and have performed PCR from all 

incorporated UNS sites without any preliminary optimization or 

troubleshooting.   

5.1.2. Construction of pUN-PrhaBAD-Pfu 

In Addgene there are two DNA polymerase-expressing vectors available: 

pAKTaq (Addgene plasmid #25712) that expresses the Thermus aquaticus 

(Taq) DNA polymerase and pET16b.Pfu (Addgene plasmid #12509) that 

expresses the Pfu DNA polymerase. While we were able to successful 

express the Taq protein and use it to perform ex vivo PCR, Taq is a 

less than ideal cloning polymerase. Taq does not create flush termini 

(leaves one 3’ adenine residue overhang) and also lacks the 

proofreading activities typical of high-fidelity polymerases. On the 

other hand, Pfu has proofreading abilities and creates blunt-ended 

products ideal for cloning purposes, but the pET16b.Pfu construct is a 

nightmare for E. coli expression. The difficulty stems from the poor 

codon compatibility of the Pfu coding sequence with E. coli as the 

host. To circumvent the poor codon adaption a special strain of E. 

coli (BL21(DE3) Rosetta) is needed which hosts a vector overexpressing 

some of the less prevalent tRNAs along with the DE3 prophage (for T7 

polymerase expression). 
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In the spirit of open-access ex vivo DNA assembly we decided it was 

prudent to have the coding sequence codon optimized and synthesized so 

that the Pfu gene can be expressed in any E. coli. To perform codon-

optimization the COOL codon optimization tool (http://bioinfo.bti.a-

star.edu.sg/COOL/) was employed to simultaneously maximize codon 

context and codon adaptability for E. coli85. With the Ribosome Binding 

Site Calculator tool a synthetic ribosome-binding site was designed 

based on the codon-optimized Pfu gene and an upstream wild-type 

rhamnose-inducible promoter (PrhaBAD)9,86. The resulting cassette plus 

the flanking UNS sequences was synthesized by IDT as two overlapping 

fragments of 1144 and 1483 base pairs and subsequently assembled along 

with the backbone using ex vivo DNA assembly. Of the approximately 200 

white transformants, 24 colonies were lifted (along with two blue 

colony controls) and used as template in colony PCR. The PCR amplified 

from UNSX across the entirety of the Pfu cassette to UNS9, and of the 

24 clones all 24 showed amplicons at the expected size (~2800 bp; Blue 

colonies were ~1500) although the bands were faint. Of these 24, 3 

clones were miniprepped the next day and sent for sequencing (Eurofins 

MWG). Of these three, one clone was identified as completely correct 

and used for subsequent procedures (pUN-PrhaBAD-Pfu sequence available 

C.2.7). 

5.1.3. Expression and Preparation of ex vivo PCR lysate 

As the original plasmid was transformed into NEB10β (and XJa/autolysis 

strains are a rarity in labs), expression and lysis was performed in 

NEB10β for all subsequent steps. Expression was performed by 
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inoculating 24 mL of pre-warmed SOB media (in a 125 mL Erlenmeyer) 

with 200 µL of an overnight culture, allowing growth for approximately 

2 hours, then adding filter sterilized 20% w/v rhamnose to a final 

concentration of 0.2% (~250 µL). 

To assay the culture for the production of the Pfu DNA polymerase, 

aliquots were removed at 6, 9 and 24 hours post-induction and frozen 

until needed. The remainder of the culture was collected at 24 hours 

post-induction. These aliquots were lysed using CelLytic B, diluted 

and protein content quantified by Bradford assay. Each protein sample 

was prepared with 25 µg of total protein (along with a NEB10β negative 

control) and visualized using SDS-PAGE under denaturing conditions. In 

the resultant gel (Figure 5.1) there is clearly a strong band in all 

the sample lanes at roughly 90 kD that is absent in the negative 

control lanes. This size correlates with the predicted molecular 

weight of the Pfu DNA polymerase (90.11 kD). Interestingly, there 

appears to be little variation in the concentration of Pfu across the 

different harvesting times. 
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Figure 5.1 Expression of Pfu DNA 
Polymerase 
Soluble lysate of NEB10β expressing Pfu was 
harvested at different time points and 
separated via denaturing SDS-PAGE. “C” is 
NEB10β without pUN plasmid, “L” is low-
molecular weight ladder. 

    

Given the encouraging results of the protein gel in Figure 5.1, the 

remaining pellets of the culture harvested at 24 hours were thawed and 

used to prepare lysates for ex vivo PCR. The lysis reaction was 

performed using CelLytic B in a 1.5:1 ratio and incubated at 30°C for 

15 minutes and subsequently diluted with lysis buffer to a final 

volume-to-pellet mass ratio of 5:1. While most of the lysate was 

centrifuged to remove the cellular debris an aliquot was first removed 

which retained the total cellular extract. The soluble fraction and 

the total cellular extract were next incubated at 80°C for 30 minutes 

to kill any host proteins (such as nucleases). The lysates are given 

one last extended spin in the centrifuge to pellet any denatured 

insoluble host proteins and the supernatant aspirated and diluted by 
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half with 100% glycerol. As with the ex vivo DNA assembly lysates, 

these lysates are stored at -20°C and can be safely removed and 

replaced into the freezer many times.  

 

Figure 5.2 Volumetric titrations of ex vivo PCR 
Functionalized lysates of Pfu were titrated to amplify the BCP band used in 2-way 
linear assemblies. Bands to the right were prepared with total lysate in the heat-kill 
process. The values below the bands indicate µL of lysate used per 50 µL reaction; “C” 
represents negative control of purified BCP fragment. 

5.1.4. ex vivo PCR 

Equipped with lysates containing the Pfu DNA polymerase, initial PCR 

reactions amplifying the 2-way circular BCP fragment were formulated 

using volumetric titrations of the extracts in a standard 50 µL Pfu 

PCR reaction. These titrations shown in Figure 5.2 exhibit a very nice 

trend with a peak at 1-2 µL of cell extract per 50 µL PCR. Comparing 

the bands on the left (heat-killed soluble fraction only) to the bands 

on the right (heat-killed total extract) it would appear that 

including the total cellular extract in the heat-kill step of lysate 

preparation increases the yield of Pfu in the final extract. This may 

be due to additional lysis of cells surviving the detergent treatment 

or may occur by freeing Pfu trapped in the insoluble fraction of the 
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extract prior to centrifugation. Second, it is clear that using 

excessive extract (or too little) causes an observable decrease in PCR 

efficiency. It is therefore advisable to perform a small titration 

experiment each time new lysates are prepared. While a slightly 

inconvenient consumption of materials and time, the long-term savings 

from the ex vivo approach are more than worth the investment. 

 

Figure 5.3 ex vivo PCR of 2-way and 3-way Fragments 
Fragments for 2-way circular (2WC), 2-way linear (2WL) and 3-way circular (3W) were 
amplified using ex vivo PCR. In addition control PCRs were performed to detect the 
contribution of background genomic (BG 16S) and pUN-PrhaBAD-Pfu plasmid (pUN) DNA. The 
positive background (+ pUN) control had purified plasmid template added. There is a 
clear presence of background amplification and side amplification (see BCP lanes). 
 
After constructing our Pfu-functionalized lysate and prototyping the 

ex vivo PCR reaction with volumetric titrations, ex vivo PCR was 

applied to generate the substrate DNA for 2-way linear, 2-way circular 

and 3-way circular assemblies. The analytical gels shown in Figure 5.3 

demonstrate that Pfu-functionalized lysate was capable of synthesizing 

all the substrate DNA used in our assembly assays we decent 

efficiency. However, there is a fair amount of side-product formed in 

some of the reactions. The presence of high levels of contaminating 

host DNA may be the critical factor in the side-product formed. This 

is clearly evidenced by the strong amplicons formed in the background 
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control lanes (“BG”). These lanes consisted of ex vivo PCR reactions 

using primers targeting the highly conserved 16S genomic loci (“16S”) 

or the pUN-PrhaBAD-Pfu (“pUN”) plasmid but without the addition of 

template. In the future the steps to remove host DNA contaminations 

would bolster ex vivo PCR fidelity. Fortunately, since the Pfu enzyme 

is thermostable, non-thermostable nucleases – such as DNase I or 

RecBCD – could be used during lysate preparation to destroy host DNA 

and then semi-selectively denature by a heat-kill before desired DNA 

substrates or products are introduced to the lysate.  

5.2. ex vivo Cloning 

Up to this point ex vivo DNA assembly has been demonstrated, 

investigated and optimized; tools such as clever assays for DNA 

assembly, self-lysing strains and a novel cloning plasmid were 

designed and developed; and the Pfu DNA polymerase was optimized, 

cloned and expressed to functionalize lysates with the ability to 

perform a high-fidelity polymerase chain reaction. Yet, the ultimate 

objective of the project was to merge these ex vivo tools and 

techniques into an encompassing ex vivo-based cloning suite. As with 

all cloning, this began with the generation and isolation of substrate 

DNA as the remainder of the 2-way and 3-way ex vivo PCRs from Figure 

5.3 were purified by gel extraction. Subsequent ex vivo DNA assembly 

reactions were performed using our NEB10β detergent-based, XJa 

detergent-based and XJa autolysis-based lysates, with the basic ex 

vivo DNA assembly reaction buffer or with 1 mM Manganese supplemented. 

In-house formulated Gibson mastermix was used as a positive control 
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and transformation of substrate DNA (‘TAR’) was used as a negative 

control for background assembly.  

 

Figure 5.4 ex vivo Cloning 
Substrate DNA amplified using ex vivo PCR was gel purified and used in ex vivo DNA 
reactions. 2 µL of the 10 µL reactions were transformed using in-house prepared 
chemicompetent NEB10β. Gibson lane represents a positive control using Gibson 
isothermal assembly formulated in-house. TAR is a negative control consisting off DNA 
fragments transformed directly into NEB10β without assembly reaction. Percentages 
represent Blue colonies to all colonies (blue and white). Error bars represent 
standard error of the mean for reactions performed in triplicate (N=3). 
 
The most striking aspect of the ex vivo Cloning pipeline is the 

elevated mutagenic rate in comparison with assemblies using Q5 DNA 

polymerase (Figure 3.4). While the total (Blue and White) colony 

forming units per femtomole are very comparable, the percentage of 

white colonies-to-blue colonies changes by over 20% in some 

circumstances. Even the Gibson assembly control shows a greatly 

increased error rate over typical efficiency. As the only difference 
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between these two tests are the manner by which the substrate DNA was 

prepared, it is convincing that the mutations are introduced during 

the PCR amplification of the substrates. However, this may not be 

indicative of significantly lowered fidelity of Pfu in comparison with 

Q5 polymerase, as misamplification products were observed in the ex 

vivo PCR reaction (Figure 5.3). Since the primers encode all the 

homology necessary for faithful assembly efficiencies of joining 

correct amplicons versus misamplified products would be approximately 

equivalent. If indeed this is the case, a simple post-lysis digestion 

using a non-thermostable nuclease (e.g.,DNase I) followed by the 

typical 80°C heat-treatment should alleviate the observed mutational 

rate of ex vivo Cloning. 
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Chapter 6. Conclusion and Future Directions 

Responding to the needs of the synthetic biology community for 

inexpensive, rapid and efficient DNA manipulation we were able to 

uncover a unique approach to DNA assembly. Working on the observation 

that all of the enzymes used in prototypical in vitro manipulations of 

DNA are highly conserved, we incorporated an ex vivo approach to 

screen several candidate organisms for DNA assembly functions. To 

accomplish this we designed a very clever assay of DNA assembly. 

Our circular assemblies provided a colorimetric output that allowed us 

to interpret the origins of each resulting transformant. In our intial 

pilot studies, we used two chloramphenicol plasmids in our two-way 

assembly and observed the growth of blue (correct), white (background) 

and red (colonies) – with many background colonies observable (Figure 

1.1.B). While we realized that this would allow us to track 

transformation efficiencies by observing fluctuations in background, 

it was not until subsequent studies did we realize that if the donor 

plasmids were maintained on different antibiotics than the destination 

vector (like in the original 3-way assembly; see Figure 2.3), we could 

track mutational rates. Because our assemblies join the BCP coding 

sequence to the destination vector at a crucial junction for proper 

expression of the BCP protein (across Ribosome Binding Site and Start 

Codon), there is a low tolerance for error during end joining. Due to 

the low throughput of performing transformation to assess DNA assembly 
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(~28 hours) we also designed a linear assembly assessed by gel 

electrophoresis (~3 hours) that greatly expanded our investigative 

capacities. 

We leveraged this linear assembly to optimize and investigate ex vivo 

DNA further. During our titration of the assembly reaction with 

divalent metals we found contradictory results between our autolysis 

strain and detergent lysed strain. This could be a function of the 

composition of the detergent, as it could very well contain the strong 

chelators EDTA or EGTA in order to improve lysis efficieny. The 

presence of these chelators would alter the apparent divalent cation 

ratios between detergent and autolysis treated extracts. However, 

there was good agreement between both strains that manganese had a 

stimulatory effect on end joining, which we confirmed in follow up 

titrations. Similarly, we investigated the biochemical origins of the 

ex vivo DNA assembly by titrating putative enzymes. 

In E. coli, DSB repair, dominated by homologous recombination, relies 

on the RecBCD complex to expose ssDNA ends and load RecA, forming the 

nucleofilament that subsequently directs a homology search and strand 

invasion of dsDNA64 – but this is different phenomena than directly 

joining two ends of DNA together directly. Previously, it was shown 

that recA− strains of E. coli join linear dsDNA with homologous 

overhangs in lysate more efficiently than their RecA-expressing 

counterparts13. However, we observed an interesting dichotomy 

surrounding RecA. During our titrations using the linear assay, RecA 

showed consistent enhanced assembly properties, but when applied to 
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circular assemblies and transformations it showed a consistently 

negative effect. It could be that RecA plays a role preserving the 

ends of the linear DNA products, while the nucleases in recA- lysates 

are free to degrade the product (and substrate) DNAs63. Either way, as 

recBCD− strains have also been reported to direct accurate DNA end 

joining, ex vivo assembly reactions may involve mechanisms independent 

of homologous recombination machinery, perhaps by an alternative end-

joining pathway29,87. We suspect that both ex vivo and in vivo DNA 

assembly is likely facilitated by multiple competing DNA repair 

mechanisms, but largely by RecBCD.  

Exonuclease activity is required for DNA end resection, but is a 

balancing act. We saw with yeast very little exonuclease activity, 

which preserves the regions of homology, but may not expose 

complementary overhangs. Conversely, extreme exonuclease activities, 

like that of Deinococcus, may be resecting bi-directionally, deleting 

the necessary homologous regions. Again, knockouts of exonucleases 

implicated in deletion of exposed overhangs may greatly improve the 

efficiency of end joining88. In our own titration experiments we saw 

this effect with the addition of dsDNA exonucleases (RecBCD and 

ExoIII). Certain ssDNA exonucleases also showed detrimental effects on 

assembly (DNA PolI and RecJ), but there was significant substrate DNA 

remaining in the lanes supporting the hypothesis that they possess the 

ability to recess homology arms. In the cell ssDNA activity is 

actually beneficial as a sort of check-and-balance to ensure the cell 

can abort non-productive recombination events88. Previous studies have 
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shown ExoI and RecJ knockouts have elevated mutational rates due to 

the loss of this abortive activity88. These hypotheses would be very 

convincing if the complete opposite effect weren’t observed in the 

exact same study. During the titration ExoI and – at its lowest levels 

– ExoT showed the ability to greatly enhance assembly, almost 8-fold 

in some circumstances. These both have opposite polarities to the 

inhibitory RecJ ssDNA exonuclease so there is clearly a preference for 

degrading the 3’ extensions, rather than the 5’ extensions. While we 

lacked the full library of strains needed to draw exquisite 

conclusions, the equivalency between nuc4-.λR and XJa highlights the 

complexity and redundancy of exonuclease activity and DNA repair 

pathways89. 

The final task at hand was to complete our ex vivo-based cloning 

pipeline. To do so we designed a new plasmid that incorporated 

features designed by the community (UNSs, riboJ), de novo designed 

parts (RBS, Codon-optimized gene) and the screenable BCP cassette from 

our own works. Using ex vivo assembly we recombined the plasmid 

backbone together with two larger synthetic fragments in a very 

effective manner. Based on 24 tested clones, all 24 contained the 

correct size inserts. Out of 3 sent for subsequent sequencing only one 

had no errors in the Pfu gene. This represents a clear win for ex vivo 

DNA assembly as a very practical cloning tool. The Pfu polymerase was 

at one time the highest-fidelity polymerase, though it has now been 

replaced by more engineered, more expensive polymerases like Q5. The 

assemblies showed a greatly elevated error rate based on an increased 
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white:blue colony ratio, but this might be corrected simply by 

removing the contaminating host DNA or performing PCR optimization 

(e.g., annealing temperature, buffer composition, etc…).  

With the successful transformation of assembly reactions derived from 

both an optimized ex vivo DNA assembly and an ex vivo PCR, the project 

has successfully completed it’s ultimate objective of establishing an 

ex vivo cloning suite. Yet, given the outcomes of the experimentation 

it is easy to instead focus on perceived shortcomings of the project. 

There were many questions that remained unanswered, conflicting 

results and components not carried to ‘full completion’ (i.e., 

generation of all nuclease-knockouts, optimization of ex vivo PCR). 

Even more egregious for some is the lack of data backed by extensive 

replicates. While understandable, this is simply a function of the 

biological systems being studied, the objectives of the study and even 

the ex vivo approach to the study.  

Biological systems are inherently noisy and complex, meaning 

establishing definitive causalities is a difficult task often not 

accomplished in even the very deepest of investigations. Further, the 

particular subcellular system being probed – DNA maintenance and 

repair – is conserved amongst every living organism25. Such 

conservation is indicative of the “do-or-die” nature of this pathway 

and is reflected in the degree of redundancy and orchestration. By 

using an approach like ex vivo that combines the throughput of an in 

vitro system with endogenous complexity of an in vivo system, 

investigations into these mechanisms can generate results that quickly 
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deviate the project from the original objective into a very large 

study all of it’s own. 

Continued development of faster and cheaper DNA assembly and genetic 

characterization methods, such as the ex vivo DNA cloning pipeline 

described here, will further accessibility and success of DNA-based 

studies and applications. As mentioned in detail, there were a number 

of surprising findings throughout the study that could be pursued. The 

first is the interesting case of ExoI. ExoI could be purchased and 

titrated into lysates with many different host background genotypes to 

investigate its contribution towards recombination/end joining. 

Alternatively, modifications could be employed to try and modulate 

native degradation. For example, using primers with non-standard 

phosphodiester analogues – such as the phosphorothioate bond – could 

be employed to halt degradation. This could be very helpful in the 

linear assembly when the product is formed and subsequently degraded 

from exposed termini before visualization. Building off the success of 

the Pfu functionalized lysate, a multienzymatic functionalized lysate 

featuring a ligase, polymerase and exonuclease could be constructed as 

an ex vivo mimic of the tripartite Gibson assembly. Moreover, 

functionalized lysates hold the potential to address some problems 

unsuitable to living cultures. Biocontainment has become a major point 

of contention for the employ of genetically modified organisms, 

particularly in an environmental context90,91. By substituting a 

functionalized lysate, the same systems can be applied as 

bioremediation treatment without the risk of spreading throughout the 
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environment, and without the tremendous costs associated with bulk 

enzyme purification. While ex vivo engineering and ex vivo molecular 

biology may not be the “silver bullet” to solve every societal 

problem, there are many academic and industrial opportunities 

addressable by ex vivo and synthetic biology. 
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Chapter 7. Materials and Methods 

7.1. Reagents, DNA and Enzymes 

All chemical reagents were purchased from Sigma-Alrich. Divalent 

metals used in titration experiments were all complexed with chloride 

(i.e., MgCl2, MnCl2, CaCl2, ZnCl2) and formulated as 1 Molar Stock 

solutions. All enzymes used in the titration experiment were purchased 

from NEB, along with the Q5 polymerase used for PCR. All DNA synthesis 

of primers and synthetic fragments was performed by IDT. The plasmids 

used for 2-way and 3-way assembly experiments were obtained from the 

Registry of Standard Biological Parts. Sequences for all DNA used are 

provided in (DNA Sequences). 

7.2. Generation of DNA Fragments for ex vivo DNA 

Assembly 

The templates, primers and products used for the assembly assays are 

summarized in Appendix C. 

7.2.1. PCR with Q5 DNA Polymerase 

The DNA fragments used to demonstrate ex vivo DNA assembly were 

generated using standard PCR of parts of the following plasmids from 

the BioBricks registry: pSB1C3-J04450, pSB1C3-K592009, and pSB1K3-

J04450. Primers used in this study (Table C.1) were generated using 

the j5 automated DNA assembly software92-94. Amplicons were generated by 

100 µL PCR reactions with Q5 polymerase (NEB) under standard reaction 
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conditions. These reactions were cycled at 98°C for 30 s; 98°C for 10 

s, 50°C for 15 s, 72°C for 25 s (repeated for 25 cycles); 72°C for 

2:00. Resultant PCRs were subsequently purified using agarose gel 

electrophoresis and extraction (Section 7.5). 

7.2.2. ex vivo PCR with Pfu DNA polymerase 

Pfu PCRs were formulated as follows (final concentration): 200 µM each 

dNTP, 1X Q5 reaction buffer (2 mM MgCl2), 500 µM each primer and ~2 ng 

template DNA per 50 µL reaction. These reactions were cycled 

differently for small fragments (<1 kb) and large fragments (>1 kb). 

For smaller pieces (i.e., BCP and Promoters): 95°C for 90 s; 95°C for 

30 s, 55°C for 30 s, 73°C for 90 s (repeated for 28 cycles); 74°C for 

3:00. For larger fragments (i.e., backbones, background controls): 

95°C for 90 s; 95°C for 45 s, 55°C for 30 s, 73°C for 4 min (repeated 

for 30 cycles); 74°C for 6:00. Resultant PCRs were subsequently 

analyzed or purified purified using agarose gel (See, 7.5). 

7.3. Preparation of Lysates 

7.3.1. Initial Study 

Cellular lysates were prepared from the following strains: E. coli 

NEB10β (NEBTM #C3019), S. cerevisiae BY4741 and D. radiodurans R1 

(ATCC® 13939). E. coli was grown in Terrific Broth with glycerol 

(Sigma®) at 37°C with shaking at 250 rpm. D. radiodurans was grown in 

123 TGY medium (5% Tryptone, 5% Yeast extract, 1% Glucose, 1% 

Potassium monophosphate) at 30°C and S. cerevisiae was grown with YPD 

media (SigmaTM) at 30°C, both shaking at 250 rpm. The preparation of 
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the bacterial (E. coli and D. radiodurans) and the S. cerevisiae 

lysates varied slightly: bacterial cultures were pelleted once 

OD600nm= 6.00-6.50, while the yeast cultures were pelleted once 

OD600nm= 4.00-4.50. Volumes of 4–6 mL of culture were centrifuged at 

13,200 rpm at 4°C for 2 min, washed with 1 mL of Milli-Q H2O, 

centrifuged again and the wet pellet massed. 2X CelLytic B Lysis 

Reagent (SigmaTM) was added to the bacterial cell pellets at 3 µL/mg of 

cells. 1X CelLytic Y Lysis Reagent (SigmaTM) was added to the yeast 

pellets in the same ratio. After the addition of the lysis reagents, 

the cells were incubated at 37°C for 10 min shaking at 300 rpm. The 

lysed cells were centrifuged at 13,200 rpm for 15 min and a 20 µL 

sample of the supernatant (lysate) was mixed with 20 µL of 100% 

glycerol to yield 40 µL aliquots. All lysate aliquots were stored at 

−20°C. 

7.3.2. Optimized Methods 

Cultures of E. coli were grown under similar conditions to those 

reported in 7.3.1, with the exception that the cultures were 

inoculated from starter cultures. For cultures using the autolysis 

cassette, the media was supplemented with 3 mM L-arabinose and 10 mM 

magnesium chloride from a 500X stock. Cultures were grown into 

saturation (OD600nm= 2.0-4.0 after about 18 hours growth) and then 

pelleted at 4200RPM at 4°C for 20 minutes. From this point on cells 

were kept on ice. Media was aspirated, making sure to remove as much 

as possible using a pipette tip and the pellets were massed (~75 

milligrams per 5 mL) in pre-massed tubes. We found that tubes can vary 
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significantly and accuracy is best when each tube is massed initially. 

Cells were washed once with ice-cold 10% glycerol solution in order to 

prevent premature lysis in a hypotonic solution by the autolysis 

strains. For detergent lysis, cell pellets are resuspended in 1.5 

volumes of CelLytic B 2X per milligram of pellet and incubated at 30°C 

with shaking for 15 minutes. The resulting lysate is then diluted with 

an additional 3.5 volumes of Lysis buffer (50 mM Tris-HCl, pH8; 0.2 mM 

EDTA; 2 mM DTT; 200 mM NaCl; 0.2% Triton X-100; 0.1 mM PMSF). 

Autolysis pellets are resuspended in 5 volumes of Lysis buffer and 

frozen at -80°C or in liquid nitrogen. Thawing the tube in a room 

temperature water bath lyses the autolysis strain. All lysates are 

then spun at the highest speed (20,000xg) for 20 minutes at 4°C. The 

resulting supernatant are very carefully aspirated into an equal 

volume of glycerol, mixed thoroughly (with pipette or vortex) and 

stored at -20°C. 

7.3.3. ex vivo PCR Lysate 

From an overnight culture, a SOB media (it is critical to use a medium 

without glucose) culture is inoculated (at a 10-2 dilution) and 

cultured at 37°C rotating at 250 RPM for about 2 hours. At this point 

the L-Rhamnose inducer is added to 0.2% (from a filter sterilized 20% 

solution). After another 3-24 hours the culture can be harvested at 

8000xg and washed with 10% glycerol. The culture is lysed in 1.5 

volumes of CelLytic B 2X and diluted to 5 volumes using lysis buffer 

(see above). The entire lysate is then incubated at 75°C for 30 

minutes, centrifuged at the highest speed (16,000xg) for 20 minutes at 
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4°C and the supernatant aspirated into an equal volume of glycerol, 

mixed thoroughly and stored at -20°C.  

7.4. DNA Assembly Reactions 

7.4.1. Initial Study 

Buffers for assembly reactions were prepared from 100× stock 

solutions. Stock solutions were as follows: 100 mM NADβ, 100 mM ATP, 

100 mM DTT, 1 M MgCl232. Tris-HCl was added to the buffer to 500 mM 

from a 1 M stock solution. A typical assembly reaction would include 6 

µL of cellular lysate, 2 µL of 10× buffer, 2 µL of nuclease-free water 

and 10 µL of a DNA master mix. DNA master mixes contained all 

fragments needed for assembly and were formulated with 20 ng/µL of the 

backbone and 6:1 molar ratio of insert fragments to the backbone. 

7.4.2. Optimized and Supplemented Conditions 

Buffers were also formulated from 100X stocks with the expection of 

the divalent cation titrations. For these experiments a “base” buffer 

with all components except for magnesium and water was formulated and 

then aliquoted, then these aliquots were fully constituted with the 

various cations and water to a 10X concentration. A typical assembly 

optimized assembly was formulated as follows: 1 µL of 10X Buffer, 5 µL 

of a 2X DNA Mastermix, 1 µL of 10X Lysate (at ~200 µg/mL) and 3 µL of 

nuclease-free water. The DNA master mixes were formulated with 5 ng/µL 

of the backbone fragment (BCP band for 2-way linear) and molar ratios 

of 1.2:1 and 2:1.2:1 for 2-way (BCP:BB) and 3-way (Promoter:BCP:BB), 
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respectively. These reactions were transferred immediately to the 

thermocycler and incubated at 37°C for 2 hours. Upon completion 

reactions were either used immediately for transformations or gel 

electrophoresis, or frozen at -20°C until used. 

7.5. Agarose Gel Analyses and Extraction 

7.5.1. Initial Study 

Gel analysis was performed using 1.0–1.2% agarose-TAE gels containing 

GelRed (BiotiumTM) as the staining agent. All analytical gels were run 

at 100 V for 30–50 min and visualized with a Molecular Imager® Gel 

Doc™ XR+ Imaging System with Image Lab™ v4.0 software (Bio-Rad). 

To purify PCR reactions, samples were run on 1.0% agarose-TAE gels 

stained with GelGreen (BiotiumTM). The gels were run at 100 V for 30 

min and subsequently visualized under blue light excitation. The gels 

showed no side product formation and bands were excised and isolated 

using ZymoCleanTM Gel DNA Recovery Kit (Zymo ResearchTM). 

7.5.2. Optimized Analytical Gels 

In the optimized format, analytical gels for 2-way linear reactions 

were formulated at 1.8% agarose in TAE buffer. 3.5 µL of GelRed 

(BiotiumTM; 50,000X in Water) was added to the molten gel and once 

poured the gels were allowed to solidify for at least one hour. To 

each 10 µL assembly reaction, 3 µL of 5X Loading Dye was added and 5 

µL loaded. For Ladders (NEB 100-bp, 1kb or 2-log Quick-load) 3.8 µL 
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were added to each lane. The gel was run at 180V for 1 minute, the run 

at 90V for 35 minutes. 

7.5.3. Gel Analysis 

To analyze the gel they were visualized with a Molecular Imager® Gel 

Doc™ XR+ Imaging System (Bio-Rad). Using Image Lab™ v4.0 software 

(Bio-Rad) the lanes and bands were identified. The lane profile was 

used to manually adjust bands with exceptional tailing or false peaks. 

Using the Relative Quantity analysis tool, the BCP band of the 

negative control is selected as the internal reference. Band 

information was exported into a Comma Separated Values file for 

subsequent analysis. Pictures of all gels not included in the main 

text are provided in (Appendix B Gel Pictures). 

 

7.6. Transformations and Preparation of Competent Cells 

7.6.1. Initial Study 

Transformations were performed using chemically competent E. coli 

NEB10β (NEB) according to manufacturer’s recommendations. Briefly, 2 

µL of reaction mixture (from ex vivo assemblies) or diluted DNA master 

mix (for in vivo assembly) were added to each transformation, these 

were incubated for 30 min on ice, heat shocked at 42°C, recovered in 

950 µL SOC at 37°C for 60 min and 50 µL of culture was spread onto 

agar plates containing the appropriate antibiotic. 
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7.6.2. Optimized Competence and Transformation 

To prepare chemicompetent E. coli for chemical transformation the 

“Ultracompetent” method of Inoue, et al was followed closely95. As 

there is not a refrigerated incubator available in our lab to culture 

at 18°C the cultures were incubated at room temperature (~21°C). 

To perform transformations, we incubated 48 µL of cells with 2 µL of 

DNA sample on ice for 30 minutes. The cells were heat-shocked in a 

42°C water bath for 45 seconds and immediately transferred and swirled 

in an ice-water bath for 90 seconds. 950 µL of room temperature SOC 

was added to the tube and it was moved to the 37°C incubator with 

shaking at 250 RPM for 1 hour. Transformants were serially-diluted 

into sterile PBS and 100 µL plated onto LB with the appropriate 

antibiotic. 

To prepare electrocompetent cells, we followed the protocol 

“Transformation of E. coli by Electroporation” in the Molecular 

Cloning Manual 4th ed. Electroporation reactions were carried out in a 

Bio-Rad Micropulser using the same volumes as used for chemical 

transformation above. 

CFU per femtomole values were calculated by taking the raw counts of 

countable plates (30-300), multiplying by the dilution factor and 

dividing by the number of femtomoles of DNA transformed. Given the 

backbone of ex vivo assemblies as the limiting substrate at 5 ng/µL, 2 

µL equates to approximately 6.6 femtomoles of 2-way and 7.3 femtomoles 



www.manaraa.com

 

 

 

97 

of 3-way. 2 µL of a 50 pg/µL solution of pUC19 equates to 0.06 

femtomoles. 

7.7. Lambda RED Recombineering 

Genomic manipulations of the nuc4- strains were performed using the 

protocols laid out by Wang, et al77. Summarizing, a single cycle of 

recombineering consisted of growing a culture of nuc4- in a 3 mL 

culture of LB + Ampicillin until OD600 = ~0.4, inducing lambda 

expression at 42°C for 15 minutes, washing 1 mL of the culture twice 

with ultrapure water, concentrating at ~50 µL and transforming 2 µL of 

a 10 µM solution of MAGE oligo(s)/ λR cassette. In order to modify 

nuc4-, an already existing chloramphenicol cassette in the host genome 

was deactivated using the cat_fwd_stop oligo (see Appendix C) and the 

chloramphenicol mutant (nuc4-.Cm-) was isolated by replica plating. 

The λR autolysis cassette (including chloramphenicol resistance) was 

amplified out of XJa, gel extracted and transformed into nuc4-.Cm-. 

Unfortunately, there was so much homology between the chloramphenicol 

cassette in the λR autolysis cassette and the deactivated 

chloramphenicol loci that many, many false-positive chloramphenicol 

transformants were obtained (as confirmed by allele-specific PCR; 

Table C.3). Instead to identify the correct integrants, a screen 

approach utilizing Phenol Red Agar + 2% Arabinose was employed to 

identify colonies unable to utilize arabinose. A positive clone was 

isolated and the integration of the lysogen gene was confirmed by 

allele-specific genotyping and a lytic phenotype. Sequences of all 

oligos used for recombineering are provided in (Table C.3). 
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Appendix A. Tables 

 
Table A.1 Summary of Assemblies 

2- way Circular (2WC) 

Part Template Forward Primer Reverse Primer Length 

BCP pSB1C3-K592009 exda1 exda2 698 

Backbone pSB1K3-J04450 exda3 exda4 2446 

2-way Linear (2WL) 

Part Template Forward Primer Reverse Primer Length 

Promoter pSB1C3-J00450 exda22 exda23 381 

BCP pSB1C3-K592009 exda12 exda13 697 

3-way Circular (3WC) 

Part Template Forward Primer Reverse Primer Length 

Backbone pSB1K3-J04450 exda3 exda19 2214 

Promoter pSB1C3-J00450 exda20 exda21 387 

BCP pSB1C3-K592009 exda12 exda2 696 

Description of the DNA fragments used in each assembly assay. DNA sequences for 
primers, template plasmids and products of assemblies can be found in Appendix C. 
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Table A.2 Strain Genotypes 
Strain Parent 

Strain 

Synonymous 

Strain 

Growth 

(Celsius; 

Resistance) 

Genotype 

NEB10β K-12 DH10Beta 37; Str 

Δ(ara-leu) 7697 araD139  fhuA ΔlacX74 

galK16 galE15 e14-

  ϕ80dlacZΔM15  recA1 relA1 endA1 

nupG  rpsL (StrR) rph spoT1 Δ(mrr-

hsdRMS-mcrBC) 

XJa K-12 JM109 37; Cm 

F`[traD36 proA+B+ laclq ∆(lacZ)M15] 

∆(lac-proAB) glnV44 (supE44) e14-

 (McrA-) thi gyrA96 (NalR) endA1 

hsdR17(rK- mK+) relA1 recA1 araB::λR, 

cat (CmR) 

nuc4- EcNR2 

 

32; Amp Cm 

F- λ- ilvG- rfb-50 rph-1 ΔmutS::cat 

Δ(ybhB-bioAB)::[lcI857 N(cro-

ea59)::tetR-bla] xonA- recJ- xseA- 

exoX-  

nuc4-.Cm- nuc4- 

 

32; Amp 

F- λ- ilvG- rfb-50 rph-1 ΔmutS::cat- 

Δ(ybhB-bioAB)::[lcI857 N(cro-

ea59)::tetR-bla] xonA- recJ- xseA- 

exoX-  

nuc4-.λR 
nuc4-

.Cm- 
 

32; Amp Cm 

F- λ- ilvG- rfb-50 rph-1 ΔmutS::cat- 

Δ(ybhB-bioAB)::[lcI857 N(cro-

ea59)::tetR-bla] xonA- recJ- xseA- 

exoX- araB::λR, cat (CmR) 

Genotypes of Strains used in the current study are presented above. Growth indicates 
temperatures used to culture strain and resistances available to strain. Relevant 
genotypes are indicated in bold and described below in Table A.3 
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Table A.3 Description of Relevant Genotypes 
Genotype Phenotypic Description 

recA1 Disables homologous recombination pathways for reduced occurrence 
of unwanted recombination in cloned DNA; cells UV sensitive 

endA1 
For cleaner preparations of DNA and better results in downstream 
applications due to the elimination of non-specific digestion by 
Endonuclease I 

rpsL Mutation in ribosomal protein S12 conveying streptomycin 
resistance 

ΔmutS::cat Deletion of mutS used for mismatch repair for better Lambda Red 
recombination; Conveys Chloramphenicol Resistance 

ΔmutS::cat- Inactivation of Chloramphenicol cassette by insertion of stop 
codon 

lcI857 
N(cro-

ea59)::tetR-
bla 

Lambda RED operon of alpha, beta and gamma proteins induced by 
heat-shock; Cells must be cultured at lower temperatures; Conveys 
Ampicillin resistance 

araB::λR, 
cat (CmR) 

Insertion of Lambda phage endolysin inducible by arabinose; 
Disrupts arabinose metabolism; Conveys Chloramphenicol resistance 

xonA- recJ- 
xseA- exoX- 

Inactivation of exonucleases (ExoI, RecJ, ExoVII, ExoX) by 
premature stop codon insertion 

Descriptions of relevant genotypes found in Table A.2 
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Table A.4 Unit Definitions of Enzymes used in Titrations 

Enzyme 

Supplied 

Concentration 

(U/µL) 

Temperature 

(Celsius) 
Time Buffer [Substrate] [Product] 

RecBCD 10 37 30 min NEB 4 
Linear dsDNA (no 

concentration) 

10 nmol (acid-soluble 

nucleotides) 

ExoI 20 37 30 min 1X ExoI 170 ng/µL (ssDNA) 10 nmol 

ExoIII 100 37 30 min NEB 1 
.15 mM (sonicated 

dsDNA) 
1 nmol 

ExoT 5 25 30 min NEB 4 
1 nmol 

(polythymidine) 

.1 nmol (TCA soluble 

nucleotides) 

RecJf 30 37 30 min NEB 2 
30 ng/µL (sonicated 

ssDNA) 

.05 nmol (TCA soluble 

nucleotides) 

DNA 

PolI 
10 37 30 min NEB 2 

70 ng/µL SalmonSperm 

DNA; 33 µM dNTPs 

10nmol (dNTPs -> acid 

insoluble material) 

Eco 

Ligase 
10 16 30 min 

1X Eco 

Ligase 

Buffer 

0.12 µM DNA termini 

(300 ng/µL) 
.06 µM ligated ends 

Unit definitions of enzymes supplied by NEB and used in titration experiments. For 
exonucleases, exonuclease activity is measured as formation of acid-soluble 
nucleotides. For DNA PolI polymerization activity is defined by formation of acid 
insoluble material from dNTPs. E. coli Ligase activity is measured by the formation of 
ligated ends from digested material. All reported unit definitions are for a 50 µL 
reaction volume. 
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Appendix B. Gel Pictures 

Below are the original agarose gel pictures used in the analysis of ex 

vivo assembly. The higher molecular weight band (BCP band) in the 

control lane (“C”) was used as the relative reference for band 

intensities. 

B.1.1 Time Course of Deinococcus, Saccharomyces, and E. coli lysates 

 

Figure B.1 Dra, Sce and Eco Time Course 
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B.1.2 Lysate Preparation (Growth Phase, Media and Glycerol) 

 

Figure B.2 Lysate Preparation (Gel 1)  
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Figure B.3 Lysate Preparation (Gel 2)  
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B.1.3 Concentration of Lysates 

 

Figure B.4 Lysate Dilutions (60 minutes) 
 
 
 

 

Figure B.5 Lysate Dilutions (120 minutes) 
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B.1.4 Buffer Optimization 

 

Figure B.6 Buffer Optimization (NEB10β) 
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Figure B.7 Buffer Optimization (XJa Autolysis) 
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B.1.5 Buffer Titration 

 

Figure B.8 Buffer Titration (NEB10β #1) 
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Figure B.9 Buffer Titration (NEB10β #2) 
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Figure B.10 Buffer Titration (XJa) 
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B.1.6 Manganese Titration 

 

Figure B.11 Manganese Titration (NEB10β) 
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B.1.7 Enzymatic Titrations 

 

Figure B.12 RecBCD, PolI, RecA, Eco Ligase Titration 
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Figure B.13 ssDNA Exonucleases Titration 
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B.1.8 RecA Titration 

 

Figure B.14 RecA Titration (XJa Autolysis) 
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Appendix C. DNA Sequences 

C.1 Primer Sequences 

Table C.1 ex vivo Assembly Assay Primers 
Primer Sequence Length 

exda1 AGAGAAAGAGGAGAAAATGAGTGTGATCGCTAAACAAATGACCTACAAGG 50 

exda2 ATTTGATGCCTGGTTATTAGGCGACCACAGGTTTGCGTGC 40 

exda3 GGTCGCCTAATAACCAGGCATCAAATAAAACGAAAGGCT 39 

exda4 GCGATCACACTCATTTTCTCCTCTTTCTCTAGTATGTGTGA 41 

exda12 AGGAGAAATACTAGATGAGTGTGATCGCTAAACAAATGACCTACAAGG 48 

exda13 GCCTGGCTCTAGTATTATTAGGCGACCACAGGTTTGCGTGC 41 

exda14 GGTCGCCTAATAATACTAGAGCCAGGCATCAAATAAAACG 40 

exda19 TGGTTTCTTAGAAGCTGATCCTTCAACTCAGCA 33 

exda20 TGAGTTGAAGGATCAGCTTCTAAGAAACCATTATTATCATGACATTAACC 50 

exda21 AGCGATCACACTCATCTAGTATTTCTCCTCTTTCTCTAGTATGTG 45 

exda22 TGAAGGATCAGCTTCTAAGAAACCATTATTATCATGACATTAACC 45 

exda23 GCGATCACACTCATCTAGTATTTCTCCTCTTTCTCTAGTATGTG 44 
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Table C.2 pUN and UNS Primers 
Primer Sequence Length 

UNS1F CATTACTCGCATCCATTCTCAG 22 

UNS1R GAGACGAGACGAGACAGC 18 

UNS2F GCTGGGAGTTCGTAGACG 18 

UNS2R GCTTGGATTCTGCGTTTGT 19 

UNS3F GCACTGAAGGTCCTCAATC 19 

UNS3R CGACCTTGATGTTTCCAGTG 20 

UNS4F CTGACCTCCTGCCAGC 16 

UNS4R GACTTTGCGTGTTGTCTTACT 21 

UNS5F GAGCCAACTCCCTTTACAAC 20 

UNS5R CTCTAACGGACTTGAGTGAGG 21 

UNS6F CTCGTTCGCTGCCACC 16 

UNS6R GTATGTGACCGTAGAGTATTCTTAG 25 

UNS7F CAAGACGCTGGCTCTGA 17 

UNS7R CGAGTAGTTCAGTAGCGGA 19 

UNS8F CCTCGTCTCAACCAAAGC 18 

UNS8R CCAGGTGGTTGATGGGT 17 
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UNS9F GTTCCTTATCATCTGGCGAATC 22 

UNS9R CAGTGCTCTTGTGGGTC 17 

UNSXF CCAGGATACATAGATTACCACAAC 24 

UNSXR GGTGGAAGGGCTCGG 15 

pGERC-BB_F TCGAGAAGGACACGGTTA 18 

pGERC-BB_R AAAGCCTTGTATGCTTCTTT 20 
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Table C.3 Oligos and Primers used for Strain Engineering 

Oligo Name Sequence 
Product 

Length 
Purpose 

cat_fwd_stop 

G*C*A*T*CGTAAAGAACATTTTGA

GGCATTTCAGTCAGTTGCTCAATGA

ACCTATAACCAGACCGTTCAGCTGG

ATATTACGGCCTTTTTAAA 

NA 
Introduces Stop Codon 

into cat gene of nuc4- 

recA.KO 

C*A*A*A*TTGTTTCTCAATCTGGC

CCAGTGCTGCCGCCAACGCTcaCTa

TTaGTTTTCGTCGATAGCCATTTTT

ACTCCTGTCATGCCGGGTA 

NA 
Introduces Stop Codon 

into recA gene 

endA.KO 

T*C*G*T*TTTAACACGGAGTAAGT

GATGTACCGTTATTTGTCTATTGCT

GCtGaGTGGTACTGAGCGCAGCATT

TTCCGGCCCGGCGTTGGCC 

NA 
Introduces Stop Codon 

into endA gene 

araB_lambdaR-f CTTCGCCCGCAAAGCCGTAA 2066 

Amplifies entire 

arabinose loci 

including endolysin and 

cat genes; Allele-

specific PCR 

araB_lambdaR-r ACAGGTCGCTGAAATGCGGC 2066 

Amplifies entire 

arabinose loci 

including endolysin and 

cat genes 
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asLambdaR-r GGTCAGTTCGAGCATAAGGC 20 

Targets LambdaR coding 

sequence; Allele-

Specific PCR 

endA.KO.v2_wt-f CGTTATTTGTCTATTGCTGCGG 191 
Allele-specifc PCR of 

endA 

endA.KO*_mut-f CCGTTATTTGTCTATTGCTGCTGA 191 
Allele-specifc PCR of 

endA 

endA.KO*-r GCACGATTGCAGATCAACAACG 191 
Allele-specifc PCR of 

endA 

recA.KO.v2_wt-f TGCCGCCAACGCTTT 474 
Allele-specific PCR of 

recA 

recA.KO.v2_mut-f TGCCGCCAACGCTCA 474 
Allele-specific PCR of 

recA 

recA.KO.v3-r GGTTTGAACGCGGATTTGTCAG 474 
Allele-specific PCR of 

recA 
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C.2 Plasmid Sequences 

Below are Genbank formatted files of the various plasmids used 

throughout the study, complete with annotations. 

C.2.1 pSB1C3-J00450 (RFP expression) 

LOCUS       pSB1C3-J00450           3139 bp ds-DNA     circular     22-APR-

2015 

DEFINITION  . 

ACCESSION   pSB1C3-J00450                                                       

VERSION     pSB1C3-J00450                                                       

FEATURES             Location/Qualifiers 

     terminator      3099..3139 

                     /label="B0012" 

     terminator      3011..3139 

                     /label="BBa_B0015" 

     rep_origin      261..875 

                     /label="pMB1 rep origin" 

     terminator      1042..1147 

                     /label="T0 terminator" 

     RBS             2279..2290 
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                     /label="B0034" 

     misc_feature    3106..3125 

                     /label="B0012 Stem-loop" 

     misc_binding    2049..2070 

                     /label="BioBrick prefix" 

     primer_bind     12..33 

                     /label="SB-prep-3P-1 primer site" 

     primer_bind     2031..2054 

                     /label="SB-prep_2Ea primer site" 

     CDS             1160..1829 

                     /label="CmR" 

     CDS             2297..3002 

                     /label="E1010" 

     misc_feature    3114..3117 

                     /label="B0012 Loop" 

     misc_binding    1..21 

                     /label="BioBrick suffix" 

     misc_feature    3022..3065 
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                     /label="B0010 Stem-loop" 

     terminator      3011..3090 

                     /label="B0010" 

     primer_bind     156..176 

                     /label="VR primer site" 

     primer_bind     1943..1962 

                     /label="VF2 primer site" 

     promoter        2071..2270 

                     /label="R0010" 

     terminator      22..93 

                     /label="Eco His Term." 

     misc_feature    3042..3045 

                     /label="B1010 Loop" 

ORIGIN 

        1 tactagtagc ggccgctgca gtccggcaaa aaagggcaag gtgtcaccac cctgcccttt 

       61 ttctttaaaa ccgaaaagat tacttcgcgt tatgcaggct tcctcgctca ctgactcgct 

      121 gcgctcggtc gttcggctgc ggcgagcggt atcagctcac tcaaaggcgg taatacggtt 

      181 atccacagaa tcaggggata acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc 
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      241 caggaaccgt aaaaaggccg cgttgctggc gtttttccac aggctccgcc cccctgacga 

      301 gcatcacaaa aatcgacgct caagtcagag gtggcgaaac ccgacaggac tataaagata 

      361 ccaggcgttt ccccctggaa gctccctcgt gcgctctcct gttccgaccc tgccgcttac 

      421 cggatacctg tccgcctttc tcccttcggg aagcgtggcg ctttctcata gctcacgctg 

      481 taggtatctc agttcggtgt aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc 

      541 cgttcagccc gaccgctgcg ccttatccgg taactatcgt cttgagtcca acccggtaag 

      601 acacgactta tcgccactgg cagcagccac tggtaacagg attagcagag cgaggtatgt 

      661 aggcggtgct acagagttct tgaagtggtg gcctaactac ggctacacta gaagaacagt 

      721 atttggtatc tgcgctctgc tgaagccagt taccttcgga aaaagagttg gtagctcttg 

      781 atccggcaaa caaaccaccg ctggtagcgg tggttttttt gtttgcaagc agcagattac 

      841 gcgcagaaaa aaaggatctc aagaagatcc tttgatcttt tctacggggt ctgacgctca 

      901 gtggaacgaa aactcacgtt aagggatttt ggtcatgaga ttatcaaaaa ggatcttcac 

      961 ctagatcctt ttaaattaaa aatgaagttt taaatcaatc taaagtatat atgagtaaac 

     1021 ttggtctgac agctcgaggc ttggattctc accaataaaa aacgcccggc ggcaaccgag 

     1081 cgttctgaac aaatccagat ggagttctga ggtcattact ggatctatca acaggagtcc 

     1141 aagcgagctc gatatcaaat tacgccccgc cctgccactc atcgcagtac tgttgtaatt 

     1201 cattaagcat tctgccgaca tggaagccat cacaaacggc atgatgaacc tgaatcgcca 

     1261 gcggcatcag caccttgtcg ccttgcgtat aatatttgcc catggtgaaa acgggggcga 
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     1321 agaagttgtc catattggcc acgtttaaat caaaactggt gaaactcacc cagggattgg 

     1381 ctgagacgaa aaacatattc tcaataaacc ctttagggaa ataggccagg ttttcaccgt 

     1441 aacacgccac atcttgcgaa tatatgtgta gaaactgccg gaaatcgtcg tggtattcac 

     1501 tccagagcga tgaaaacgtt tcagtttgct catggaaaac ggtgtaacaa gggtgaacac 

     1561 tatcccatat caccagctca ccgtctttca ttgccatacg aaattccgga tgagcattca 

     1621 tcaggcgggc aagaatgtga ataaaggccg gataaaactt gtgcttattt ttctttacgg 

     1681 tctttaaaaa ggccgtaata tccagctgaa cggtctggtt ataggtacat tgagcaactg 

     1741 actgaaatgc ctcaaaatgt tctttacgat gccattggga tatatcaacg gtggtatatc 

     1801 cagtgatttt tttctccatt ttagcttcct tagctcctga aaatctcgat aactcaaaaa 

     1861 atacgcccgg tagtgatctt atttcattat ggtgaaagtt ggaacctctt acgtgcccga 

     1921 tcaactcgag tgccacctga cgtctaagaa accattatta tcatgacatt aacctataaa 

     1981 aataggcgta tcacgaggca gaatttcaga taaaaaaaat ccttagcttt cgctaaggat 

     2041 gatttctgga attcgcggcc gcttctagag caatacgcaa accgcctctc cccgcgcgtt 

     2101 ggccgattca ttaatgcagc tggcacgaca ggtttcccga ctggaaagcg ggcagtgagc 

     2161 gcaacgcaat taatgtgagt tagctcactc attaggcacc ccaggcttta cactttatgc 

     2221 ttccggctcg tatgttgtgt ggaattgtga gcggataaca atttcacaca tactagagaa 

     2281 agaggagaaa tactagatgg cttcctccga agacgttatc aaagagttca tgcgtttcaa 

     2341 agttcgtatg gaaggttccg ttaacggtca cgagttcgaa atcgaaggtg aaggtgaagg 
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     2401 tcgtccgtac gaaggtaccc agaccgctaa actgaaagtt accaaaggtg gtccgctgcc 

     2461 gttcgcttgg gacatcctgt ccccgcagtt ccagtacggt tccaaagctt acgttaaaca 

     2521 cccggctgac atcccggact acctgaaact gtccttcccg gaaggtttca aatgggaacg 

     2581 tgttatgaac ttcgaagacg gtggtgttgt taccgttacc caggactcct ccctgcaaga 

     2641 cggtgagttc atctacaaag ttaaactgcg tggtaccaac ttcccgtccg acggtccggt 

     2701 tatgcagaaa aaaaccatgg gttgggaagc ttccaccgaa cgtatgtacc cggaagacgg 

     2761 tgctctgaaa ggtgaaatca aaatgcgtct gaaactgaaa gacggtggtc actacgacgc 

     2821 tgaagttaaa accacctaca tggctaaaaa accggttcag ctgccgggtg cttacaaaac 

     2881 cgacatcaaa ctggacatca cctcccacaa cgaagactac accatcgttg aacagtacga 

     2941 acgtgctgaa ggtcgtcact ccaccggtgc ttaataacgc tgatagtgct agtgtagatc 

     3001 gctactagag ccaggcatca aataaaacga aaggctcagt cgaaagactg ggcctttcgt 

     3061 tttatctgtt gtttgtcggt gaacgctctc tactagagtc acactggctc accttcgggt 

     3121 gggcctttct gcgtttata 

// 
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C.2.2 pSB1C3-K592009 (Contains BCP Coding Sequence) 

LOCUS       pSB1C3-K592009          2739 bp ds-DNA     circular     27-JUN-

2015 

DEFINITION  . 

COMMENT     ApEinfo:methylated:1                                                

FEATURES             Location/Qualifiers 

     misc_binding    670..690 

                     /label="BioBrick suffix" 

     primer_bind     825..845 

                     /label="VR primer site" 

     CDS             1..669 

                     /label="amilCP" 

     terminator      691..762 

                     /label="Eco His Term." 

     primer_bind     2700..2723 

                     /label="SB-prep_2Ea primer site" 

     rep_origin      930..1544 

                     /label="pMB1 rep origin" 

     primer_bind     2612..2631 
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                     /label="VF2 primer site" 

     primer_bind     2640..2666 

                     /label="pSBamil_rev" 

     CDS             1829..2498 

                     /label="CmR" 

     terminator      1711..1816 

                     /label="T0 terminator" 

     misc_binding    2718..2739 

                     /label="BioBrick prefix" 

     primer_bind     81..102 

                     /label="pSBamil_for" 

     primer_bind     681..702 

                     /label="SB-prep-3P-1 primer site" 

ORIGIN 

        1 atgagtgtga tcgctaaaca aatgacctac aaggtttata tgtcaggcac ggtcaatgga 

       61 cactactttg aggtcgaagg cgatggaaaa ggtaagccct acgaggggga gcagacggta 

      121 aagctcactg tcaccaaggg cggacctctg ccatttgctt gggatatttt atcaccacag 

      181 tgtcagtacg gaagcatacc attcaccaag taccctgaag acatccctga ctatgtaaag 
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      241 cagtcattcc cggagggcta tacatgggag aggatcatga actttgaaga tggtgcagtg 

      301 tgtactgtca gcaatgattc cagcatccaa ggcaactgtt tcatctacca tgtcaagttc 

      361 tctggtttga actttcctcc caatggacct gtcatgcaga agaagacaca gggctgggaa 

      421 cccaacactg agcgtctctt tgcacgagat ggaatgctgc taggaaacaa ctttatggct 

      481 ctgaagttag aaggaggcgg tcactatttg tgtgaattta aaactactta caaggcaaag 

      541 aagcctgtga agatgccagg gtatcactat gttgaccgca aactggatgt aaccaatcac 

      601 aacaaggatt acacttcggt tgagcagtgt gaaatttcca ttgcacgcaa acctgtggtc 

      661 gcctaataat actagtagcg gccgctgcag tccggcaaaa aagggcaagg tgtcaccacc 

      721 ctgccctttt tctttaaaac cgaaaagatt acttcgcgtt atgcaggctt cctcgctcac 

      781 tgactcgctg cgctcggtcg ttcggctgcg gcgagcggta tcagctcact caaaggcggt 

      841 aatacggtta tccacagaat caggggataa cgcaggaaag aacatgtgag caaaaggcca 

      901 gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg tttttccaca ggctccgccc 

      961 ccctgacgag catcacaaaa atcgacgctc aagtcagagg tggcgaaacc cgacaggact 

     1021 ataaagatac caggcgtttc cccctggaag ctccctcgtg cgctctcctg ttccgaccct 

     1081 gccgcttacc ggatacctgt ccgcctttct cccttcggga agcgtggcgc tttctcatag 

     1141 ctcacgctgt aggtatctca gttcggtgta ggtcgttcgc tccaagctgg gctgtgtgca 

     1201 cgaacccccc gttcagcccg accgctgcgc cttatccggt aactatcgtc ttgagtccaa 

     1261 cccggtaaga cacgacttat cgccactggc agcagccact ggtaacagga ttagcagagc 
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     1321 gaggtatgta ggcggtgcta cagagttctt gaagtggtgg cctaactacg gctacactag 

     1381 aagaacagta tttggtatct gcgctctgct gaagccagtt accttcggaa aaagagttgg 

     1441 tagctcttga tccggcaaac aaaccaccgc tggtagcggt ggtttttttg tttgcaagca 

     1501 gcagattacg cgcagaaaaa aaggatctca agaagatcct ttgatctttt ctacggggtc 

     1561 tgacgctcag tggaacgaaa actcacgtta agggattttg gtcatgagat tatcaaaaag 

     1621 gatcttcacc tagatccttt taaattaaaa atgaagtttt aaatcaatct aaagtatata 

     1681 tgagtaaact tggtctgaca gctcgaggct tggattctca ccaataaaaa acgcccggcg 

     1741 gcaaccgagc gttctgaaca aatccagatg gagttctgag gtcattactg gatctatcaa 

     1801 caggagtcca agcgagctcg atatcaaatt acgccccgcc ctgccactca tcgcagtact 

     1861 gttgtaattc attaagcatt ctgccgacat ggaagccatc acaaacggca tgatgaacct 

     1921 gaatcgccag cggcatcagc accttgtcgc cttgcgtata atatttgccc atggtgaaaa 

     1981 cgggggcgaa gaagttgtcc atattggcca cgtttaaatc aaaactggtg aaactcaccc 

     2041 agggattggc tgagacgaaa aacatattct caataaaccc tttagggaaa taggccaggt 

     2101 tttcaccgta acacgccaca tcttgcgaat atatgtgtag aaactgccgg aaatcgtcgt 

     2161 ggtattcact ccagagcgat gaaaacgttt cagtttgctc atggaaaacg gtgtaacaag 

     2221 ggtgaacact atcccatatc accagctcac cgtctttcat tgccatacga aattccggat 

     2281 gagcattcat caggcgggca agaatgtgaa taaaggccgg ataaaacttg tgcttatttt 

     2341 tctttacggt ctttaaaaag gccgtaatat ccagctgaac ggtctggtta taggtacatt 
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     2401 gagcaactga ctgaaatgcc tcaaaatgtt ctttacgatg ccattgggat atatcaacgg 

     2461 tggtatatcc agtgattttt ttctccattt tagcttcctt agctcctgaa aatctcgata 

     2521 actcaaaaaa tacgcccggt agtgatctta tttcattatg gtgaaagttg gaacctctta 

     2581 cgtgcccgat caactcgagt gccacctgac gtctaagaaa ccattattat catgacatta 

     2641 acctataaaa ataggcgtat cacgaggcag aatttcagat aaaaaaaatc cttagctttc 

     2701 gctaaggatg atttctggaa ttcgcggccg cttctagag 

// 
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C.2.3 pSB1K3-J00450 (RFP expression with Kanamycin Resistance) 

LOCUS       pSB1K3-J04450           3273 bp ds-DNA     circular     21-APR-

2015 

DEFINITION  . 

FEATURES             Location/Qualifiers 

     stem_loop       30..64 

                     /label="Stem loop" 

     CDS             2431..3136 

                     /label="E1010" 

     misc_feature    3240..3259 

                     /label="B0012 Stem-loop" 

     primer_bind     complement(157..176) 

                     /label="Verification reverse (VR) primer binding site" 

     gene            2205..3273 

                     /label="BBa_J04450" 

     misc_feature    1..21 

                     /label="DNA: BioBrick suffix" 

     misc_feature    2183..2204 
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                     /label="Biobrick Prefix Standard (RFC10)" 

     terminator      3233..3273 

                     /label="B0012" 

     misc_difference complement(1880..1880) 

                     /label="Silent Mut: G->C mutation to remove XhoI site" 

     terminator      3145..3224 

                     /label="B0010" 

     promoter        2205..2404 

                     /label="R0010" 

     primer_bind     2067..2086 

                     /label="Verification forward (VF2) primer binding site" 

     terminator      3145..3273 

                     /label="BBa_B0015" 

     misc_feature    3248..3251 

                     /label="B0012 Loop" 

     stem_loop       22..93 

                     /label="E. coli his operon terminator" 

     misc_feature    complement(2017..2060) 
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                     /label="repeat region misc" 

     misc_feature    3156..3199 

                     /label="B0010 Stem-loop" 

     RBS             2413..2424 

                     /label="B0034" 

     misc_feature    complement(261..875) 

                     /label="rep (pMB1) misc" 

     misc_feature    3176..3179 

                     /label="B1010 Loop" 

     misc_feature    276..276 

                     /label="ORI misc" 

     stem_loop       complement(2143..2146) 

                     /label="end of terminator" 

     stem_loop       complement(2156..2175) 

                     /label="Stem loop" 

     misc_feature    1..21 

                     /label="Biobrick Suffix (RFC10)" 

     CDS             complement(1097..1912) 
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                     /label="Kanamycin resistance marker CDS" 

ORIGIN 

        1 tactagtagc ggccgctgca gtccggcaaa aaagggcaag gtgtcaccac cctgcccttt 

       61 ttctttaaaa ccgaaaagat tacttcgcgt tatgcaggct tcctcgctca ctgactcgct 

      121 gcgctcggtc gttcggctgc ggcgagcggt atcagctcac tcaaaggcgg taatacggtt 

      181 atccacagaa tcaggggata acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc 

      241 caggaaccgt aaaaaggccg cgttgctggc gtttttccac aggctccgcc cccctgacga 

      301 gcatcacaaa aatcgacgct caagtcagag gtggcgaaac ccgacaggac tataaagata 

      361 ccaggcgttt ccccctggaa gctccctcgt gcgctctcct gttccgaccc tgccgcttac 

      421 cggatacctg tccgcctttc tcccttcggg aagcgtggcg ctttctcata gctcacgctg 

      481 taggtatctc agttcggtgt aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc 

      541 cgttcagccc gaccgctgcg ccttatccgg taactatcgt cttgagtcca acccggtaag 

      601 acacgactta tcgccactgg cagcagccac tggtaacagg attagcagag cgaggtatgt 

      661 aggcggtgct acagagttct tgaagtggtg gcctaactac ggctacacta gaagaacagt 

      721 atttggtatc tgcgctctgc tgaagccagt taccttcgga aaaagagttg gtagctcttg 

      781 atccggcaaa caaaccaccg ctggtagcgg tggttttttt gtttgcaagc agcagattac 

      841 gcgcagaaaa aaaggatctc aagaagatcc tttgatcttt tctacggggt ctgacgctca 

      901 gtggaacgaa aactcacgtt aagggatttt ggtcatgaga ttatcaaaaa ggatcttcac 
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      961 ctagatcctt ttaaattaaa aatgaagttt taaatcaatc taaagtatat atgagtaaac 

     1021 ttggtctgac agctcgagtc ccgtcaagtc agcgtaatgc tctgccagtg ttacaaccaa 

     1081 ttaaccaatt ctgattagaa aaactcatcg agcatcaaat gaaactgcaa tttattcata 

     1141 tcaggattat caataccata tttttgaaaa agccgtttct gtaatgaagg agaaaactca 

     1201 ccgaggcagt tccataggat ggcaagatcc tggtatcggt ctgcgattcc gactcgtcca 

     1261 acatcaatac aacctattaa tttcccctcg tcaaaaataa ggttatcaag tgagaaatca 

     1321 ccatgagtga cgactgaatc cggtgagaat ggcaaaagct tatgcatttc tttccagact 

     1381 tgttcaacag gccagccatt acgctcgtca tcaaaatcac tcgcatcaac caaaccgtta 

     1441 ttcattcgtg attgcgcctg agcgagacga aatacgcgat cgctgttaaa aggacaatta 

     1501 caaacaggaa tcgaatgcaa ccggcgcagg aacactgcca gcgcatcaac aatattttca 

     1561 cctgaatcag gatattcttc taatacctgg aatgctgttt tcccggggat cgcagtggtg 

     1621 agtaaccatg catcatcagg agtacggata aaatgcttga tggtcggaag aggcataaat 

     1681 tccgtcagcc agtttagtct gaccatctca tctgtaacat cattggcaac gctacctttg 

     1741 ccatgtttca gaaacaactc tggcgcatcg ggcttcccat acaatcgata gattgtcgca 

     1801 cctgattgcc cgacattatc gcgagcccat ttatacccat ataaatcagc atccatgttg 

     1861 gaatttaatc gcggcctgga gcaagacgtt tcccgttgaa tatggctcat aacacccctt 

     1921 gtattactgt ttatgtaagc agacagtttt attgttcatg atgatatatt tttatcttgt 

     1981 gcaatgtaac atcagagatt ttgagacaca acgtggcttt gttgaataaa tcgaactttt 
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     2041 gctgagttga aggatcagct cgagtgccac ctgacgtcta agaaaccatt attatcatga 

     2101 cattaaccta taaaaatagg cgtatcacga ggcagaattt cagataaaaa aaatccttag 

     2161 ctttcgctaa ggatgatttc tggaattcgc ggccgcttct agagcaatac gcaaaccgcc 

     2221 tctccccgcg cgttggccga ttcattaatg cagctggcac gacaggtttc ccgactggaa 

     2281 agcgggcagt gagcgcaacg caattaatgt gagttagctc actcattagg caccccaggc 

     2341 tttacacttt atgcttccgg ctcgtatgtt gtgtggaatt gtgagcggat aacaatttca 

     2401 cacatactag agaaagagga gaaatactag atggcttcct ccgaagacgt tatcaaagag 

     2461 ttcatgcgtt tcaaagttcg tatggaaggt tccgttaacg gtcacgagtt cgaaatcgaa 

     2521 ggtgaaggtg aaggtcgtcc gtacgaaggt acccagaccg ctaaactgaa agttaccaaa 

     2581 ggtggtccgc tgccgttcgc ttgggacatc ctgtccccgc agttccagta cggttccaaa 

     2641 gcttacgtta aacacccggc tgacatcccg gactacctga aactgtcctt cccggaaggt 

     2701 ttcaaatggg aacgtgttat gaacttcgaa gacggtggtg ttgttaccgt tacccaggac 

     2761 tcctccctgc aagacggtga gttcatctac aaagttaaac tgcgtggtac caacttcccg 

     2821 tccgacggtc cggttatgca gaaaaaaacc atgggttggg aagcttccac cgaacgtatg 

     2881 tacccggaag acggtgctct gaaaggtgaa atcaaaatgc gtctgaaact gaaagacggt 

     2941 ggtcactacg acgctgaagt taaaaccacc tacatggcta aaaaaccggt tcagctgccg 

     3001 ggtgcttaca aaaccgacat caaactggac atcacctccc acaacgaaga ctacaccatc 

     3061 gttgaacagt acgaacgtgc tgaaggtcgt cactccaccg gtgcttaata acgctgatag 
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     3121 tgctagtgta gatcgctact agagccaggc atcaaataaa acgaaaggct cagtcgaaag 

     3181 actgggcctt tcgttttatc tgttgtttgt cggtgaacgc tctctactag agtcacactg 

     3241 gctcaccttc gggtgggcct ttctgcgttt ata 

// 
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C.2.4  Circular Assembly Product (in Kanamycin Backbone) 

LOCUS       pSB1K3-J04450           3273 bp ds-DNA     circular     21-APR-

2015 

DEFINITION  . 

FEATURES             Location/Qualifiers 

     stem_loop       30..64 

                     /label="Stem loop" 

     CDS             2431..3136 

                     /label="E1010" 

     misc_feature    3240..3259 

                     /label="B0012 Stem-loop" 

     primer_bind     complement(157..176) 

                     /label="Verification reverse (VR) primer binding site" 

     gene            2205..3273 

                     /label="BBa_J04450" 

     misc_feature    1..21 

                     /label="DNA: BioBrick suffix" 

     misc_feature    2183..2204 

                     /label="Biobrick Prefix Standard (RFC10)" 
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     terminator      3233..3273 

                     /label="B0012" 

     misc_difference complement(1880..1880) 

                     /label="Silent Mut: G->C mutation to remove XhoI site" 

     terminator      3145..3224 

                     /label="B0010" 

     promoter        2205..2404 

                     /label="R0010" 

     primer_bind     2067..2086 

                     /label="Verification forward (VF2) primer binding site" 

     terminator      3145..3273 

                     /label="BBa_B0015" 

     misc_feature    3248..3251 

                     /label="B0012 Loop" 

     stem_loop       22..93 

                     /label="E. coli his operon terminator" 

     misc_feature    complement(2017..2060) 

                     /label="repeat region misc" 
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     misc_feature    3156..3199 

                     /label="B0010 Stem-loop" 

     RBS             2413..2424 

                     /label="B0034" 

     misc_feature    complement(261..875) 

                     /label="rep (pMB1) misc" 

     misc_feature    3176..3179 

                     /label="B1010 Loop" 

     misc_feature    276..276 

                     /label="ORI misc" 

     stem_loop       complement(2143..2146) 

                     /label="end of terminator" 

     stem_loop       complement(2156..2175) 

                     /label="Stem loop" 

     misc_feature    1..21 

                     /label="Biobrick Suffix (RFC10)" 

     CDS             complement(1097..1912) 

                     /label="Kanamycin resistance marker CDS" 
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ORIGIN 

        1 tactagtagc ggccgctgca gtccggcaaa aaagggcaag gtgtcaccac cctgcccttt 

       61 ttctttaaaa ccgaaaagat tacttcgcgt tatgcaggct tcctcgctca ctgactcgct 

      121 gcgctcggtc gttcggctgc ggcgagcggt atcagctcac tcaaaggcgg taatacggtt 

      181 atccacagaa tcaggggata acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc 

      241 caggaaccgt aaaaaggccg cgttgctggc gtttttccac aggctccgcc cccctgacga 

      301 gcatcacaaa aatcgacgct caagtcagag gtggcgaaac ccgacaggac tataaagata 

      361 ccaggcgttt ccccctggaa gctccctcgt gcgctctcct gttccgaccc tgccgcttac 

      421 cggatacctg tccgcctttc tcccttcggg aagcgtggcg ctttctcata gctcacgctg 

      481 taggtatctc agttcggtgt aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc 

      541 cgttcagccc gaccgctgcg ccttatccgg taactatcgt cttgagtcca acccggtaag 

      601 acacgactta tcgccactgg cagcagccac tggtaacagg attagcagag cgaggtatgt 

      661 aggcggtgct acagagttct tgaagtggtg gcctaactac ggctacacta gaagaacagt 

      721 atttggtatc tgcgctctgc tgaagccagt taccttcgga aaaagagttg gtagctcttg 

      781 atccggcaaa caaaccaccg ctggtagcgg tggttttttt gtttgcaagc agcagattac 

      841 gcgcagaaaa aaaggatctc aagaagatcc tttgatcttt tctacggggt ctgacgctca 

      901 gtggaacgaa aactcacgtt aagggatttt ggtcatgaga ttatcaaaaa ggatcttcac 

      961 ctagatcctt ttaaattaaa aatgaagttt taaatcaatc taaagtatat atgagtaaac 
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     1021 ttggtctgac agctcgagtc ccgtcaagtc agcgtaatgc tctgccagtg ttacaaccaa 

     1081 ttaaccaatt ctgattagaa aaactcatcg agcatcaaat gaaactgcaa tttattcata 

     1141 tcaggattat caataccata tttttgaaaa agccgtttct gtaatgaagg agaaaactca 

     1201 ccgaggcagt tccataggat ggcaagatcc tggtatcggt ctgcgattcc gactcgtcca 

     1261 acatcaatac aacctattaa tttcccctcg tcaaaaataa ggttatcaag tgagaaatca 

     1321 ccatgagtga cgactgaatc cggtgagaat ggcaaaagct tatgcatttc tttccagact 

     1381 tgttcaacag gccagccatt acgctcgtca tcaaaatcac tcgcatcaac caaaccgtta 

     1441 ttcattcgtg attgcgcctg agcgagacga aatacgcgat cgctgttaaa aggacaatta 

     1501 caaacaggaa tcgaatgcaa ccggcgcagg aacactgcca gcgcatcaac aatattttca 

     1561 cctgaatcag gatattcttc taatacctgg aatgctgttt tcccggggat cgcagtggtg 

     1621 agtaaccatg catcatcagg agtacggata aaatgcttga tggtcggaag aggcataaat 

     1681 tccgtcagcc agtttagtct gaccatctca tctgtaacat cattggcaac gctacctttg 

     1741 ccatgtttca gaaacaactc tggcgcatcg ggcttcccat acaatcgata gattgtcgca 

     1801 cctgattgcc cgacattatc gcgagcccat ttatacccat ataaatcagc atccatgttg 

     1861 gaatttaatc gcggcctgga gcaagacgtt tcccgttgaa tatggctcat aacacccctt 

     1921 gtattactgt ttatgtaagc agacagtttt attgttcatg atgatatatt tttatcttgt 

     1981 gcaatgtaac atcagagatt ttgagacaca acgtggcttt gttgaataaa tcgaactttt 

     2041 gctgagttga aggatcagct cgagtgccac ctgacgtcta agaaaccatt attatcatga 
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     2101 cattaaccta taaaaatagg cgtatcacga ggcagaattt cagataaaaa aaatccttag 

     2161 ctttcgctaa ggatgatttc tggaattcgc ggccgcttct agagcaatac gcaaaccgcc 

     2221 tctccccgcg cgttggccga ttcattaatg cagctggcac gacaggtttc ccgactggaa 

     2281 agcgggcagt gagcgcaacg caattaatgt gagttagctc actcattagg caccccaggc 

     2341 tttacacttt atgcttccgg ctcgtatgtt gtgtggaatt gtgagcggat aacaatttca 

     2401 cacatactag agaaagagga gaaatactag atggcttcct ccgaagacgt tatcaaagag 

     2461 ttcatgcgtt tcaaagttcg tatggaaggt tccgttaacg gtcacgagtt cgaaatcgaa 

     2521 ggtgaaggtg aaggtcgtcc gtacgaaggt acccagaccg ctaaactgaa agttaccaaa 

     2581 ggtggtccgc tgccgttcgc ttgggacatc ctgtccccgc agttccagta cggttccaaa 

     2641 gcttacgtta aacacccggc tgacatcccg gactacctga aactgtcctt cccggaaggt 

     2701 ttcaaatggg aacgtgttat gaacttcgaa gacggtggtg ttgttaccgt tacccaggac 

     2761 tcctccctgc aagacggtga gttcatctac aaagttaaac tgcgtggtac caacttcccg 

     2821 tccgacggtc cggttatgca gaaaaaaacc atgggttggg aagcttccac cgaacgtatg 

     2881 tacccggaag acggtgctct gaaaggtgaa atcaaaatgc gtctgaaact gaaagacggt 

     2941 ggtcactacg acgctgaagt taaaaccacc tacatggcta aaaaaccggt tcagctgccg 

     3001 ggtgcttaca aaaccgacat caaactggac atcacctccc acaacgaaga ctacaccatc 

     3061 gttgaacagt acgaacgtgc tgaaggtcgt cactccaccg gtgcttaata acgctgatag 

     3121 tgctagtgta gatcgctact agagccaggc atcaaataaa acgaaaggct cagtcgaaag 



www.manaraa.com

 

 

 

47 

     3181 actgggcctt tcgttttatc tgttgtttgt cggtgaacgc tctctactag agtcacactg 

     3241 gctcaccttc gggtgggcct ttctgcgttt ata 

// 
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C.2.5  2-way Linear Product 

LOCUS       2-Way Linear Product    1050 bp ds-DNA     linear       27-JUN-

2015 

DEFINITION  . 

FEATURES             Location/Qualifiers 

     misc_feature    120..141 

                     /label="Biobrick Prefix Standard (RFC10)" 

     misc_feature    1..13 

                     /label="exda22 5'overhang" 

     misc_feature    1..381 

                     /label="2WL-Promoter" 

     misc_feature    354..1049 

                     /label="2WL-BCP" 

     misc_feature    354..381 

                     /label="2WL-overlap" 

     promoter        142..341 

                     /label="R0010" 

     primer_bind     448..469 
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                     /label="pSBamil_for" 

     stem_loop       complement(80..83) 

                     /label="end of terminator" 

     CDS             368..1036 

                     /label="amilCP" 

     misc_feature    354..365 

                     /label="exda12 5'overhang" 

     stem_loop       complement(93..112) 

                     /label="Stem loop" 

     misc_feature    complement(371..381) 

                     /label="exda23 5'overhang" 

     RBS             350..361 

                     /label="B0034" 

ORIGIN 

        1 TGAAGGATCA GCTTCTAAGA AACCATTATT ATCATGACAT TAACCtataa aaataggcgt 

       61 atcacgaggc agaatttcag ataaaaaaaa tccttagctt tcgctaagga tgatttctgg 

      121 aattcgcggc cgcttctaga gcaatacgca aaccgcctct ccccgcgcgt tggccgattc 

      181 attaatgcag ctggcacgac aggtttcccg actggaaagc gggcagtgag cgcaacgcaa 
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      241 ttaatgtgag ttagctcact cattaggcac cccaggcttt acactttatg cttccggctc 

      301 gtatgttgtg tggaattgtg agcggataac aatttcaCAC ATACTAGAGA AAGAGGAGAA 

      361 ATACTAGATG AGTGTGATCG CTAAACAAAT GACCTACAAG Gtttatatgt caggcacggt 

      421 caatggacac tactttgagg tcgaaggcga tggaaaaggt aagccctacg agggggagca 

      481 gacggtaaag ctcactgtca ccaagggcgg acctctgcca tttgcttggg atattttatc 

      541 accacagtgt cagtacggaa gcataccatt caccaagtac cctgaagaca tccctgacta 

      601 tgtaaagcag tcattcccgg agggctatac atgggagagg atcatgaact ttgaagatgg 

      661 tgcagtgtgt actgtcagca atgattccag catccaaggc aactgtttca tctaccatgt 

      721 caagttctct ggtttgaact ttcctcccaa tggacctgtc atgcagaaga agacacaggg 

      781 ctgggaaccc aacactgagc gtctctttgc acgagatgga atgctgctag gaaacaactt 

      841 tatggctctg aagttagaag gaggcggtca ctatttgtgt gaatttaaaa ctacttacaa 

      901 ggcaaagaag cctgtgaaga tgccagggta tcactatgtt gaccgcaaac tggatgtaac 

      961 caatcacaac aaggattaca cttcggttga gcagtgtgaa atttccattG CACGCAAACC 

     1021 TGTGGTCGCC TAATAATACT AGAGCCAGGC 

// 
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C.2.6 pUN Plasmid 

LOCUS       T5-J23100-modBCP-GERC   4348 bp ds-DNA     circular     10-FEB-

2015 

DEFINITION  . 

FEATURES             Location/Qualifiers 

     terminator      complement(1813..1866) 

                     /label="putative terminator" 

     misc_RNA        244..250 

                     /label="cleaved 5'UTR" 

     promoter        complement(3771..3799) 

                     /label="AmpR promoter" 

     misc_feature    1275..1314 

                     /label="UNS9" 

     promoter        383..417 

                     /label="J23100 (strong promoter)" 

     terminator      3910..4067 

                     /label="rrnB terminator" 

     misc_feature    2086..2915 
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                     /label="p15A origin" 

     terminator      complement(4255..4295) 

                     /label="Sal2 terminator" 

     misc_binding    2754..2765 

                     /label="Bsp24I site" 

     misc_binding    1907..1912 

                     /label="" 

     terminator      4182..4226 

                     /label="RNAI terminator" 

     misc_feature    244..318 

                     /label="RiboJ" 

     primer_bind     119..158 

                     /label="UNS7" 

     misc_feature    complement(1125..1164) 

                     /label="UNS5" 

     terminator      complement(1441..1483) 

                     /label="L17 terminator" 

     CDS             complement(2920..3729) 
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                     /label="KanR" 

     terminator      1328..1381 

                     /label="R2-17 terminator" 

     terminator      41..118 

                     /label="B0055 Terminator (NCBI:AY643800)" 

     misc_feature    319..358 

                     /label="UNS6" 

     enhancer        359..382 

                     /label="Full UP Element" 

     misc_feature    204..243 

                     /label="UNS4" 

     misc_feature    1..40 

                     /label="UNSX" 

     promoter        159..203 

                     /label="T5 promoter" 

     CDS             456..1124 

                     /label="modified amilCP CDS" 

ORIGIN 
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        1 ccaggataca tagattacca caactccgag cccttccacc aaggaatatt cagcaatttg 

       61 cccgtgccga agaaaggccc acccgtgaag gtgagccagt gagttgattg ctacgtaaca 

      121 agacgctggc tctgacattt ccgctactga actactcgTC ATAAAAAATT TATTTGCTTT 

      181 GTGAGCGGAT AACAATTATA ATActgacct cctgccagca atagtaagac aacacgcaaa 

      241 gtcagctgtc accggatgtg ctttccggtc tgatgagtcc gtgaggacga aacagcctct 

      301 acaaataatt ttgtttaaCT CGTTCGCTGC CACCTAAGAA TACTCTACGG TCACATACGG 

      361 AAAATTTTTT TAAAAAAAAA ACTTTACAGC TAGCTCAGTC CTAGGTATTA TGCTAGCTAC 

      421 ATCCAATCGC CACTCAAATA AGGAGCACGT AAACAATGAG CGTTATCGCT AAACAAATGA 

      481 CCTACAAGGT TTATATGTCA GGCACGGTCA ATGGACACTA CTTTGAGGTC GAAGGCGATG 

      541 GAAAAGGTAA GCCCTACGAG GGGGAGCAGA CGGTAAAGCT CACTGTCACC AAGGGCGGAC 

      601 CTCTGCCATT TGCTTGGGAT ATTTTATCAC CACAGTGTCA GTACGGAAGC ATACCATTCA 

      661 CCAAGTACCC TGAAGACATC CCTGACTATG TAAAGCAGTC ATTCCCGGAG GGCTATACAT 

      721 GGGAGAGGAT CATGAACTTT GAAGATGGTG CAGTGTGTAC TGTCAGCAAT GATTCCAGCA 

      781 TCCAAGGCAA CTGTTTCATC TACCATGTCA AGTTCTCTGG TTTGAACTTT CCTCCCAATG 

      841 GACCTGTCAT GCAGAAGAAG ACACAGGGCT GGGAACCCAA CACTGAGCGT CTCTTTGCAC 

      901 GAGATGGAAT GCTGCTAGGA AACAACTTTA TGGCTCTGAA GTTAGAAGGA GGCGGTCACT 

      961 ATTTGTGTGA ATTTAAAACT ACTTACAAGG CAAAGAAGCC TGTGAAGATG CCAGGGTATC 

     1021 ACTATGTTGA CCGCAAACTG GATGTAACCA ATCACAACAA GGATTACACT TCGGTTGAGC 
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     1081 AGTGTGAAAT TTCCATTGCA CGCAAACCTG TGGTCGCCTA ATAACTCTAA CGGACTTGAG 

     1141 TGAGGTTGTA AAGGGAGTTG GCTCCTCGGT ACCAAATTCC AGAAAAGAGG CCTCCCGAAA 

     1201 GGGGGGCCTT TTTTCGTTTT GGTCCGGGAG ACCAGAAACA AAAAAAGGCC GCGTTAGCGG 

     1261 CCTTCAATAA TTGGGTTCCT TATCATCTGG CGAATCGGAC CCACAAGAGC ACTGtcgaga 

     1321 aggacacggt taatactagg cctgctggct ggtaatcgcc agcaggcctt tttatttggg 

     1381 ggagagggaa gtcatgaaaa aactaacctt tgaaattcga tctccaccac atcagctctg 

     1441 aagcaacgta aaaaaacccg ccccggcggg tttttttata cccgtagtat ccccacttat 

     1501 ctacaatagc tgtccttaat taatctagaa aaatgaaggg aagttcctat actttctaga 

     1561 gaataggaac ttctataggg agtcgaataa gggcgacaca aaaggtattc taaatgcata 

     1621 ataaatactg ataacatctt atagtttgta ttatattttg tattatcgtt gacatgtata 

     1681 attttgatat caaaaactga ttttcccttt attattttcg agatttattt tcttaattct 

     1741 ctttaacaaa ctagaaatat tgtatataca aaaaatcata aataatagat gaatagttta 

     1801 attataggtg ttcatcaatc gaaaaagcaa cgtatcttat ttaaagtgcg ttgctttttt 

     1861 ctcatttata aggttaaata attctcatat atcaagcaaa gtgacaggcg cccttaaata 

     1921 ttctgacaaa tgctctttcc ctaaactccc cccataaaaa aacccgccga agcgggtttt 

     1981 tacgttattt gcggattaac gattactcgt tatcagaacc gcccaggatg cctggcagtt 

     2041 ccctactctc gccgctgcgc tcggtcgttc ggctgcggga cctcagcgct agcggagtgt 

     2101 atactggctt actatgttgg cactgatgag ggtgtcagtg aagtgcttca tgtggcagga 
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     2161 gaaaaaaggc tgcaccggtg cgtcagcaga atatgtgata caggatatat tccgcttcct 

     2221 cgctcactga ctcgctacgc tcggtcgttc gactgcggcg agcggaaatg gcttacgaac 

     2281 ggggcggaga tttcctggaa gatgccagga agatacttaa cagggaagtg agagggccgc 

     2341 ggcaaagccg tttttccata ggctccgccc ccctgacaag catcacgaaa tctgacgctc 

     2401 aaatcagtgg tggcgaaacc cgacaggact ataaagatac caggcgtttc cccctggcgg 

     2461 ctccctcgtg cgctctcctg ttcctgcctt tcggtttacc ggtgtcattc cgctgttatg 

     2521 gccgcgtttg tctcattcca cgcctgacac tcagttccgg gtaggcagtt cgctccaagc 

     2581 tggactgtat gcacgaaccc cccgttcagt ccgaccgctg cgccttatcc ggtaactatc 

     2641 gtcttgagtc caacccggaa agacatgcaa aagcaccact ggcagcagcc actggtaatt 

     2701 gatttagagg agttagtctt gaagtcatgc gccggttaag gctaaactga aaggacaagt 

     2761 tttggtgact gcgctcctcc aagccagtta cctcggttca aagagttggt agctcagaga 

     2821 accttcgaaa aaccgccctg caaggcggtt ttttcgtttt cagagcaaga gattacgcgc 

     2881 agaccaaaac gatctcaaga agatcatctt attaagcttt tagaaaaact catcgagcat 

     2941 caaatgaaac tgcaatttat tcatatcagg attatcaata ccatattttt gaaaaagccg 

     3001 tttctgtaat gaaggagaaa actcaccgag gcagttccat aggatggcaa gatcctggta 

     3061 tcggtctgcg attccgactc gtccaacatc aatacaacct attaatttcc cctcgtcaaa 

     3121 aataaggtta tcaagtgaga aatcaccatg agtgacgact gaatccggtg agaatggcaa 

     3181 aagtttatgc atttctttcc agacttgttc aacaggccag ccattacgct cgtcatcaaa 
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     3241 atcactcgca tcaaccaaac cgttattcat tcgtgattgc gcctgagcga ggcgaaatac 

     3301 gcgatcgctg ttaaaaggac aattacaaac aggaatcgag tgcaaccggc gcaggaacac 

     3361 tgccagcgca tcaacaatat tttcacctga atcaggatat tcttctaata cctggaacgc 

     3421 tgtttttccg gggatcgcag tggtgagtaa ccatgcatca tcaggagtac ggataaaatg 

     3481 cttgatggtc ggaagtggca taaattccgt cagccagttt agtctgacca tctcatctgt 

     3541 aacatcattg gcaacgctac ctttgccatg tttcagaaac aactctggcg catcgggctt 

     3601 cccatacaag cgatagattg tcgcacctga ttgcccgaca ttatcgcgag cccatttata 

     3661 cccatataaa tcagcatcca tgttggaatt taatcgcggc ctcgacgttt cccgttgaat 

     3721 atggctcata ttcttccttt ttcaatatta ttgaagcatt tatcagggtt attgtctcat 

     3781 gagcggatac atatttgaat gtatttagaa aaataaacaa ataggggtca gtgttacaac 

     3841 caattaacca attctgaaca ttatcgcgag cccatttata cctgaatatg gctcataaca 

     3901 ccccttgttt gcctggcggc agtagcgcgg tggtcccacc tgaccccatg ccgaactcag 

     3961 aagtgaaacg ccgtagcgcc gatggtagtg tggggactcc ccatgcgaga gtagggaact 

     4021 gccaggcatc aaataaaacg aaaggctcag tcgaaagact gggcctttcg cccgggctaa 

     4081 ttagggggtg tcgcccttat tcgactctat agggaagttc ctattctcta gaaagtatag 

     4141 gaacttctga aggggggctc gagcggccgc aaaaggaaaa gatccggcaa acaaaccacc 

     4201 gttggtagcg gtggtttttt tgtttggatc gacaatcttc gtaagcgtca tcaataagcg 

     4261 taaaaaaacc gggcaatgcc cggtttttta atgagaaatt ttacctgtcg tagccgccac 
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     4321 catccggcaa agaagcatac aaggcttt 

// 
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C.2.7 Pfu expression plasmid for ex vivo PCR 

LOCUS       pUN-rhaBp-Pfu           5887 bp ds-DNA     circular     27-JUN-

2015 

DEFINITION  . 

FEATURES             Location/Qualifiers 

     -10_signal      280..285 

                     /label="-10 region" 

     primer_bind     119..158 

                     /label="UNS7" 

     RBS             302..335 

                     /label="synRBS (60K TIR)" 

     terminator      complement(2980..3022) 

                     /label="L17 terminator" 

     CDS             complement(4459..5268) 

                     /label="KanR" 

     protein_bind    159..180 

                     /label="CRP-cAMP binding site" 

     misc_binding    4293..4304 
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                     /label="Bsp24I site" 

     terminator      2867..2920 

                     /label="R2-17 terminator" 

     misc_feature    1..40 

                     /label="UNSX" 

     misc_feature    3625..4454 

                     /label="p15A origin" 

     terminator      complement(5794..5834) 

                     /label="Sal2 terminator" 

     misc_feature    2814..2853 

                     /label="UNS9" 

     -35_signal      259..264 

                     /label="-35 region" 

     terminator      41..118 

                     /label="B0055 Terminator (NCBI:AY643800)" 

     misc_signal     292..292 

                     /label="TSS" 

     misc_feature    1221..1262 
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                     /label="gBlock overlap" 

     protein_bind    244..260 

                     /label="RhaS binding site" 

     promoter        159..301 

                     /label="rhaBADp" 

     misc_feature    complement(2664..2703) 

                     /label="UNS5" 

     CDS             336..2663 

                     /label="PfuDNApol" 

     terminator      5721..5765 

                     /label="RNAI terminator" 

     protein_bind    189..210 

                     /label="CRP-cAMP binding site" 

     promoter        complement(5310..5338) 

                     /label="AmpR promoter" 

     terminator      5449..5606 

                     /label="rrnB terminator" 

     misc_binding    3446..3451 
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                     /label="" 

     misc_signal     264..269 

                     /label="EcoRI site" 

     protein_bind    211..227 

                     /label="RhaS binding site" 

     terminator      complement(3352..3405) 

                     /label="putative terminator" 

ORIGIN 

        1 ccaggataca tagattacca caactccgag cccttccacc aaggaatatt cagcaatttg 

       61 cccgtgccga agaaaggccc acccgtgaag gtgagccagt gagttgattg ctacgtaaca 

      121 agacgctggc tctgacattt ccgctactga actactcgcg gtgagcatca catcaccaca 

      181 attcagcaaa ttgtgaacat catcacgttc atctttccct ggttgccaat ggcccatttt 

      241 cctgtcagta acgagaaggt cgcgtattca ggcgcttttt agactggtcg taatgaaatt 

      301 cAATAAAGCA AGCAAACACT ATAAGGAGTC CGCACATGAT CCTGGATGTC GATTACATCA 

      361 CCGAAGAAGG CAAACCGGTG ATCCGTCTGT TCAAAAAAGA AAATGGTAAA TTCAAGATAG 

      421 AACACGATCG CACCTTTCGC CCTTATATTT ATGCACTGTT ACGCGATGAC AGCAAAATCG 

      481 AAGAAGTCAA AAAGATCACC GGCGAACGCC ACGGTAAAAT CGTGCGCATT GTTGATGTTG 

      541 AAAAAGTGGA GAAAAAATTC CTGGGCAAGC CAATTACTGT CTGGAAGCTC TACCTGGAAC 
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      601 ATCCGCAGGA TGTGCCGACG ATTCGTGAAA AGGTGCGTGA GCATCCCGCG GTGGTGGATA 

      661 TTTTTGAATA TGACATTCCG TTTGCCAAAC GGTATCTGAT TGATAAAGGG CTGATCCCGA 

      721 TGGAAGGTGA AGAGGAACTG AAAATTCTGG CATTTGATAT CGAAACGCTG TATCACGAAG 

      781 GTGAGGAGTT CGGCAAAGGC CCGATCATCA TGATCAGCTA CGCTGATGAA AATGAAGCAA 

      841 AAGTAATTAC CTGGAAAAAC ATCGACCTGC CGTATGTCGA AGTTGTTTCT TCAGAGCGCG 

      901 AAATGATTAA ACGCTTTTTA CGGATTATTC GCGAAAAAGA CCCAGACATC ATTGTCACCT 

      961 ACAACGGTGA CAGTTTCGAT TTCCCGTACC TTGCGAAGCG TGCAGAAAAA CTCGGCATTA 

     1021 AACTGACCAT TGGTCGTGAC GGCAGCGAGC CAAAAATGCA GCGTATTGGC GATATGACCG 

     1081 CCGTAGAAGT AAAAGGCCGT ATCCATTTTG ACCTTTATCA TGTTATCACT CGCACGATCA 

     1141 ACCTGCCAAC ATACACCCTC GAGGCGGTTT ATGAAGCGAT CTTCGGTAAG CCGAAAGAAA 

     1201 AAGTGTATGC CGATGAAATT GCGAAAGCGT GGGAATCCGG CGAGAATCTG GAACGTGTTG 

     1261 CCAAATACAG CATGGAAGAT GCCAAAGCTA CTTACGAATT GGGAAAAGAG TTTTTGCCAA 

     1321 TGGAGATTCA GCTGAGCCGC CTGGTTGGTC AGCCGCTGTG GGATGTATCC CGTTCTTCGA 

     1381 CGGGTAACCT GGTGGAATGG TTTCTCTTGC GTAAGGCTTA TGAGCGTAAC GAAGTGGCGC 

     1441 CGAACAAACC TTCTGAAGAA GAGTATCAGC GCCGTTTGCG CGAGAGTTAT ACCGGTGGTT 

     1501 TTGTGAAAGA ACCGGAGAAA GGATTATGGG AAAACATTGT CTATCTCGAC TTCCGCGCGC 

     1561 TGTATCCGTC TATTATTATC ACCCACAACG TGTCACCGGA TACCCTGAAC CTCGAAGGCT 

     1621 GTAAAAATTA CGATATTGCC CCGCAAGTCG GTCACAAATT TTGCAAAGAT ATCCCCGGAT 
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     1681 TTATTCCTTC GCTGCTGGGG CATCTGCTGG AAGAGCGGCA AAAAATTAAA ACGAAAATGA 

     1741 AAGAAACACA AGATCCGATT GAGAAGATTT TGCTCGATTA TCGCCAGAAA GCAATAAAAT 

     1801 TGCTGGCGAA CAGCTTCTAC GGCTACTACG GTTATGCGAA AGCCCGCTGG TATTGTAAGG 

     1861 AGTGCGCCGA AAGTGTCACT GCCTGGGGCC GCAAATATAT TGAACTGGTA TGGAAAGAGC 

     1921 TGGAAGAGAA GTTTGGTTTT AAAGTTCTTT ACATCGACAC CGATGGTCTG TACGCCACGA 

     1981 TTCCCGGCGG CGAAAGCGAA GAAATTAAGA AGAAAGCACT TGAATTTGTC AAGTATATCA 

     2041 ATTCGAAACT GCCTGGCCTG CTGGAGCTTG AGTACGAGGG GTTTTATAAA CGCGGTTTCT 

     2101 TTGTTACCAA AAAACGTTAT GCTGTGATTG ACGAAGAAGG GAAAGTCATT ACCCGCGGCT 

     2161 TAGAGATCGT TCGTCGCGAC TGGAGCGAAA TCGCCAAGGA AACTCAGGCG CGCGTGCTGG 

     2221 AAACCATCTT AAAACACGGC GACGTTGAGG AAGCCGTTCG CATTGTGAAG GAAGTGATTC 

     2281 AAAAGCTTGC CAACTACGAA ATCCCGCCGG AAAAACTGGC CATCTATGAA CAGATTACGC 

     2341 GTCCGCTGCA TGAATACAAA GCGATTGGGC CGCATGTCGC AGTGGCAAAA AAGCTGGCGG 

     2401 CAAAAGGTGT GAAAATCAAA CCGGGCATGG TGATCGGCTA TATCGTACTG CGTGGTGATG 

     2461 GCCCAATCAG TAATCGTGCG ATACTGGCTG AAGAATACGA CCCGAAGAAA CATAAATATG 

     2521 ATGCGGAATA TTACATTGAA AACCAGGTTC TGCCGGCGGT ATTACGTATT CTGGAGGGCT 

     2581 TTGGCTACCG TAAAGAGGAT CTGCGCTATC AAAAAACCCG TCAGGTGGGA CTGACGAGCT 

     2641 GGCTGAATAT CAAAAAAAGC TAACTCTAAC GGACTTGAGT GAGGTTGTAA AGGGAGTTGG 

     2701 CTCCTCGGTA CCAAATTCCA GAAAAGAGGC CTCCCGAAAG GGGGGCCTTT TTTCGTTTTG 
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     2761 GTCCGGGAGA CCAGAAACAA AAAAAGGCCG CGTTAGCGGC CTTCAATAAT TGGGTTCCTT 

     2821 ATCATCTGGC GAATCGGACC CACAAGAGCA CTGtcgagaa ggacacggtt aatactaggc 

     2881 ctgctggctg gtaatcgcca gcaggccttt ttatttgggg gagagggaag tcatgaaaaa 

     2941 actaaccttt gaaattcgat ctccaccaca tcagctctga agcaacgtaa aaaaacccgc 

     3001 cccggcgggt ttttttatac ccgtagtatc cccacttatc tacaatagct gtccttaatt 

     3061 aatctagaaa aatgaaggga agttcctata ctttctagag aataggaact tctataggga 

     3121 gtcgaataag ggcgacacaa aaggtattct aaatgcataa taaatactga taacatctta 

     3181 tagtttgtat tatattttgt attatcgttg acatgtataa ttttgatatc aaaaactgat 

     3241 tttcccttta ttattttcga gatttatttt cttaattctc tttaacaaac tagaaatatt 

     3301 gtatatacaa aaaatcataa ataatagatg aatagtttaa ttataggtgt tcatcaatcg 

     3361 aaaaagcaac gtatcttatt taaagtgcgt tgcttttttc tcatttataa ggttaaataa 

     3421 ttctcatata tcaagcaaag tgacaggcgc ccttaaatat tctgacaaat gctctttccc 

     3481 taaactcccc ccataaaaaa acccgccgaa gcgggttttt acgttatttg cggattaacg 

     3541 attactcgtt atcagaaccg cccaggatgc ctggcagttc cctactctcg ccgctgcgct 

     3601 cggtcgttcg gctgcgggac ctcagcgcta gcggagtgta tactggctta ctatgttggc 

     3661 actgatgagg gtgtcagtga agtgcttcat gtggcaggag aaaaaaggct gcaccggtgc 

     3721 gtcagcagaa tatgtgatac aggatatatt ccgcttcctc gctcactgac tcgctacgct 

     3781 cggtcgttcg actgcggcga gcggaaatgg cttacgaacg gggcggagat ttcctggaag 
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     3841 atgccaggaa gatacttaac agggaagtga gagggccgcg gcaaagccgt ttttccatag 

     3901 gctccgcccc cctgacaagc atcacgaaat ctgacgctca aatcagtggt ggcgaaaccc 

     3961 gacaggacta taaagatacc aggcgtttcc ccctggcggc tccctcgtgc gctctcctgt 

     4021 tcctgccttt cggtttaccg gtgtcattcc gctgttatgg ccgcgtttgt ctcattccac 

     4081 gcctgacact cagttccggg taggcagttc gctccaagct ggactgtatg cacgaacccc 

     4141 ccgttcagtc cgaccgctgc gccttatccg gtaactatcg tcttgagtcc aacccggaaa 

     4201 gacatgcaaa agcaccactg gcagcagcca ctggtaattg atttagagga gttagtcttg 

     4261 aagtcatgcg ccggttaagg ctaaactgaa aggacaagtt ttggtgactg cgctcctcca 

     4321 agccagttac ctcggttcaa agagttggta gctcagagaa ccttcgaaaa accgccctgc 

     4381 aaggcggttt tttcgttttc agagcaagag attacgcgca gaccaaaacg atctcaagaa 

     4441 gatcatctta ttaagctttt agaaaaactc atcgagcatc aaatgaaact gcaatttatt 

     4501 catatcagga ttatcaatac catatttttg aaaaagccgt ttctgtaatg aaggagaaaa 

     4561 ctcaccgagg cagttccata ggatggcaag atcctggtat cggtctgcga ttccgactcg 

     4621 tccaacatca atacaaccta ttaatttccc ctcgtcaaaa ataaggttat caagtgagaa 

     4681 atcaccatga gtgacgactg aatccggtga gaatggcaaa agtttatgca tttctttcca 

     4741 gacttgttca acaggccagc cattacgctc gtcatcaaaa tcactcgcat caaccaaacc 

     4801 gttattcatt cgtgattgcg cctgagcgag gcgaaatacg cgatcgctgt taaaaggaca 

     4861 attacaaaca ggaatcgagt gcaaccggcg caggaacact gccagcgcat caacaatatt 
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     4921 ttcacctgaa tcaggatatt cttctaatac ctggaacgct gtttttccgg ggatcgcagt 

     4981 ggtgagtaac catgcatcat caggagtacg gataaaatgc ttgatggtcg gaagtggcat 

     5041 aaattccgtc agccagttta gtctgaccat ctcatctgta acatcattgg caacgctacc 

     5101 tttgccatgt ttcagaaaca actctggcgc atcgggcttc ccatacaagc gatagattgt 

     5161 cgcacctgat tgcccgacat tatcgcgagc ccatttatac ccatataaat cagcatccat 

     5221 gttggaattt aatcgcggcc tcgacgtttc ccgttgaata tggctcatat tcttcctttt 

     5281 tcaatattat tgaagcattt atcagggtta ttgtctcatg agcggataca tatttgaatg 

     5341 tatttagaaa aataaacaaa taggggtcag tgttacaacc aattaaccaa ttctgaacat 

     5401 tatcgcgagc ccatttatac ctgaatatgg ctcataacac cccttgtttg cctggcggca 

     5461 gtagcgcggt ggtcccacct gaccccatgc cgaactcaga agtgaaacgc cgtagcgccg 

     5521 atggtagtgt ggggactccc catgcgagag tagggaactg ccaggcatca aataaaacga 

     5581 aaggctcagt cgaaagactg ggcctttcgc ccgggctaat tagggggtgt cgcccttatt 

     5641 cgactctata gggaagttcc tattctctag aaagtatagg aacttctgaa ggggggctcg 

     5701 agcggccgca aaaggaaaag atccggcaaa caaaccaccg ttggtagcgg tggttttttt 

     5761 gtttggatcg acaatcttcg taagcgtcat caataagcgt aaaaaaaccg ggcaatgccc 

     5821 ggttttttaa tgagaaattt tacctgtcgt agccgccacc atccggcaaa gaagcataca 

     5881 aggcttt 

// 
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